Edit model card

drawing

Evaluation

image/png

How to use

Hugggingface

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B-chat-plus")
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B-chat-plus", torch_dtype=torch.bfloat16, device_map="auto")

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})

prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)

pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)

VLLM

from vllm import LLM, SamplingParams

sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/karasu-7B-chat-plus")

messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Base checkpoint

lightblue/karasu-7B

Training datasets (total ~7B)

  • Lightblue's suite of Kujira datasets (unreleased)
  • Lightblue's own question-based datasets (unreleased)
  • Lightblue's own category-based datasets (unreleased)
  • OASST (Japanese chats only)
  • ShareGPT (Japanese chats only)
  • augmxnt/ultra-orca-boros-en-ja-v1 (['airoboros', 'slimorca', 'ultrafeedback', 'airoboros_ja_new'] only)

Developed by

Lightblue technology logo

Engineers

Peter Devine

Sho Higuchi

Advisors

Yuuki Yamanaka

Atom Sonoda

Project manager

Shunichi Taniguchi

Dataset evaluator

Renju Aoki

Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train blockblockblock/karasu-7B-chat-plus-bpw4-exl2