bob-bob-bob-3's picture
End of training
c64b8ab verified
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
model-index:
- name: classification-hate-speech-DE-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# classification-hate-speech-DE-2
This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0522
- F1 macro: 0.3925
- Weighted: 0.5885
- Balanced accuracy: 0.5201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 14
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 macro | Weighted | Balanced accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|
| 1.3119 | 1.0 | 152 | 1.0717 | 0.4111 | 0.6682 | 0.4701 |
| 0.717 | 2.0 | 304 | 1.2404 | 0.3989 | 0.6063 | 0.5128 |
| 0.4124 | 3.0 | 456 | 1.5531 | 0.4029 | 0.6116 | 0.5286 |
| 0.1543 | 4.0 | 608 | 2.4557 | 0.3507 | 0.5427 | 0.5053 |
| 0.0445 | 5.0 | 760 | 2.6602 | 0.3950 | 0.5707 | 0.5254 |
| 0.1482 | 6.0 | 912 | 2.8551 | 0.3990 | 0.5643 | 0.5533 |
| 0.0016 | 7.0 | 1064 | 2.6333 | 0.4016 | 0.6096 | 0.5128 |
| 0.0012 | 8.0 | 1216 | 2.7488 | 0.3970 | 0.6019 | 0.5206 |
| 0.0008 | 9.0 | 1368 | 2.8494 | 0.3989 | 0.6025 | 0.5203 |
| 0.0005 | 10.0 | 1520 | 3.0943 | 0.3886 | 0.5799 | 0.5228 |
| 0.0005 | 11.0 | 1672 | 3.0410 | 0.3896 | 0.5872 | 0.5132 |
| 0.0006 | 12.0 | 1824 | 3.0730 | 0.4022 | 0.5912 | 0.5379 |
| 0.0004 | 13.0 | 1976 | 3.0387 | 0.3928 | 0.5910 | 0.5206 |
| 0.0005 | 14.0 | 2128 | 3.0522 | 0.3925 | 0.5885 | 0.5201 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1