File size: 22,708 Bytes
03f6297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
---
base_model: microsoft/deberta-v3-base
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123245
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what type of inheritance does haemochromatosis
  sentences:
  - Nestled on the tranquil banks of the Pamlico River, Moss Landing is a vibrant
    new community of thoughtfully conceived, meticulously crafted single-family homes
    in Washington, North Carolina. Washington is renowned for its historic architecture
    and natural beauty.
  - '1 Microwave on high for 8 to 10 minutes or until tender, turning the yams once.
    2  To microwave sliced yams: Wash, peel, and cut off the woody portions and ends.
    3  Cut yams into quarters. 4  Place the yams and 1/2 cup water in a microwave-safe
    casserole.ake the Yams. 1  Place half the yams in a 1-quart casserole. 2  Layer
    with half the brown sugar and half the margarine. 3  Repeat the layers. 4  Bake,
    uncovered, in a 375 degree F oven for 30 to 35 minutes or until the yams are glazed,
    spooning the liquid over the yams once or twice during cooking.'
  - Types 1, 2, and 3 hemochromatosis are inherited in an autosomal recessive pattern,
    which means both copies of the gene in each cell have mutations. Most often, the
    parents of an individual with an autosomal recessive condition each carry one
    copy of the mutated gene but do not show signs and symptoms of the condition.Type
    4 hemochromatosis is distinguished by its autosomal dominant inheritance pattern.With
    this type of inheritance, one copy of the altered gene in each cell is sufficient
    to cause the disorder. In most cases, an affected person has one parent with the
    condition.ype 1, the most common form of the disorder, and type 4 (also called
    ferroportin disease) begin in adulthood. Men with type 1 or type 4 hemochromatosis
    typically develop symptoms between the ages of 40 and 60, and women usually develop
    symptoms after menopause. Type 2 hemochromatosis is a juvenile-onset disorder.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
    mainland China .
  sentences:
  - 'More than 3,700 people have died : around 3,100 in mainland China and around
    550 in all other countries combined .'
  - 'More than 3,200 people have died : almost 3,000 in mainland China and around
    275 in other countries .'
  - more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: The male reproductive system consists of structures that produce
    sperm and secrete testosterone.
  sentences:
  - What does the male reproductive system consist of?
  - What facilitates the diffusion of ions across a membrane?
  - Autoimmunity can develop with time, and its causes may be rooted in this?
- source_sentence: Nitrogen gas comprises about three-fourths of earth's atmosphere.
  sentences:
  - What do all cells have in common?
  - What gas comprises about three-fourths of earth's atmosphere?
  - What do you call an animal in which the embryo, often termed a joey, is born immature
    and must complete its development outside the mother's body?
- source_sentence: What device is used to regulate a person's heart rate?
  sentences:
  - 'Marie Antoinette and the French Revolution    .   Famous Faces    .   Mad Max:
    Maximilien Robespierre   |   PBS Extended Interviews > Resources > For Educators
    > Mad Max: Maximilien Robespierre Maximilien Robespierre was born May 6, 1758
    in Arras, France. Educated at the Lycée Louis-le-Grand in Paris as a lawyer, Robespierre
    became a disciple of philosopher Jean-Jacques Rousseau and a passionate advocate
    for the poor. Called "the Incorruptible" because of his unwavering dedication
    to the Revolution, Robespierre joined the Jacobin Club and earned a loyal following.
    In contrast to the more republican Girondins and Marie Antoinette, Robespierre
    fiercely opposed declaring war on Austria, feeling it would distract from revolutionary
    progress in France. Robespierre''s exemplary oratory skills influenced the National
    Convention in 1792 to avoid seeking public opinion about the Convention’s decision
    to execute King Louis XVI.  In 1793, the Convention elected Robespierre to the
    Committee of Public Defense. He was a highly controversial member, developing
    radical policies, warning of conspiracies, and suggesting restructuring the Convention.
    This behavior eventually led to his downfall, and he was guillotined without trial
    on 10th Thermidor An II (July 28, 1794), marking the end of the Reign of Terror.
    Famous Faces'
  - Devices for Arrhythmia Devices for Arrhythmia Updated:Dec 21,2016 In a medical
    emergency, life-threatening arrhythmias may be stopped by giving the heart an
    electric shock (as with a defibrillator ). For people with recurrent arrhythmias,
    medical devices such as a pacemaker and implantable cardioverter defibrillator
    (ICD) can help by continuously monitoring the heart's electrical system and providing
    automatic correction when an arrhythmia starts to occur. This section covers everything
    you need to know about these devices. Implantable Cardioverter Defibrillator (ICD)
  - 'vintage cleats | eBay vintage cleats: 1 2 3 4 5 eBay determines this price through
    a machine learned model of the product''s sale prices within the last 90 days.
    eBay determines trending price through a machine learned model of the product’s
    sale prices within the last 90 days. "New" refers to a brand-new, unused, unopened,
    undamaged item, and "Used" refers to an item that has been used previously. Top
    Rated Plus Sellers with highest buyer ratings Returns, money back Sellers with
    highest buyer ratings Returns, money back'
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.8253431554642914
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.870857890879963
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8653068915625914
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8667110599943904
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8671346646296434
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8681442638917114
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7826717704847901
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7685403521338614
      name: Spearman Dot
    - type: pearson_max
      value: 0.8671346646296434
      name: Pearson Max
    - type: spearman_max
      value: 0.870857890879963
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.71875
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8745474815368652
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.617169373549884
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7519949674606323
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5155038759689923
      name: Cosine Precision
    - type: cosine_recall
      value: 0.7687861271676301
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6116004689391709
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.693359375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 401.3755187988281
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.566735112936345
      name: Dot F1
    - type: dot_f1_threshold
      value: 295.2575988769531
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.4394904458598726
      name: Dot Precision
    - type: dot_recall
      value: 0.7976878612716763
      name: Dot Recall
    - type: dot_ap
      value: 0.5243551756921989
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.724609375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 228.3092498779297
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6267281105990783
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 266.0207824707031
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.5210727969348659
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.7861271676300579
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.6101425904568746
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.720703125
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 9.726119041442871
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6303854875283447
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 14.837699890136719
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.5186567164179104
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.8034682080924855
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.6172110045723997
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.724609375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 401.3755187988281
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6303854875283447
      name: Max F1
    - type: max_f1_threshold
      value: 295.2575988769531
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5210727969348659
      name: Max Precision
    - type: max_recall
      value: 0.8034682080924855
      name: Max Recall
    - type: max_ap
      value: 0.6172110045723997
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.673828125
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7472400069236755
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6863468634686347
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7334084510803223
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6078431372549019
      name: Cosine Precision
    - type: cosine_recall
      value: 0.788135593220339
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7293502303398447
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.6484375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 392.88726806640625
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6634920634920635
      name: Dot F1
    - type: dot_f1_threshold
      value: 310.97833251953125
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.5304568527918782
      name: Dot Precision
    - type: dot_recall
      value: 0.885593220338983
      name: Dot Recall
    - type: dot_ap
      value: 0.6331200610041253
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.671875
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 277.69342041015625
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6830122591943958
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 301.36639404296875
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.582089552238806
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.826271186440678
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.7276384343706648
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.68359375
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 15.343950271606445
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6895238095238095
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 15.738676071166992
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.6262975778546713
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.7669491525423728
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.7307379367367225
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.68359375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 392.88726806640625
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6895238095238095
      name: Max F1
    - type: max_f1_threshold
      value: 310.97833251953125
      name: Max F1 Threshold
    - type: max_precision
      value: 0.6262975778546713
      name: Max Precision
    - type: max_recall
      value: 0.885593220338983
      name: Max Recall
    - type: max_ap
      value: 0.7307379367367225
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v3-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) <!-- at revision 8ccc9b6f36199bec6961081d44eb72fb3f7353f3 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - negation-triplets
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
    - global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8253     |
| **spearman_cosine** | **0.8709** |
| pearson_manhattan   | 0.8653     |
| spearman_manhattan  | 0.8667     |
| pearson_euclidean   | 0.8671     |
| spearman_euclidean  | 0.8681     |
| pearson_dot         | 0.7827     |
| spearman_dot        | 0.7685     |
| pearson_max         | 0.8671     |
| spearman_max        | 0.8709     |


<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 68
- `learning_rate`: 3.5e-05
- `weight_decay`: 0.0005
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 68
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 0.0005
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```