metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-xsmall
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: No, monsieur.
sentences:
- Yes, sir.
- Look, there's a legend here.
- All models are subject to analysis.
- source_sentence: She shrugged.
sentences:
- She acted like it didn't matter.
- He felt bad for doubting her.
- Jacques Teti movies are my favorite.
- source_sentence: We can think.
sentences:
- We need to think.
- A man is on his way to work.
- Her favorite candy is chocolate.
- source_sentence: He loved her.
sentences:
- She was loved by him.
- The person is playing rugby.
- All models are subject to analysis.
- source_sentence: in each square
sentences:
- It is widespread.
- A young girl flips an omelet.
- He charged Jon with a knife.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-xsmall
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7972304062599285
name: Pearson Cosine
- type: spearman_cosine
value: 0.8069984848350104
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8078500467589406
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8072286629818308
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8083747460970299
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.807329204776433
name: Spearman Euclidean
- type: pearson_dot
value: 0.7028547677818588
name: Pearson Dot
- type: spearman_dot
value: 0.690944321229592
name: Spearman Dot
- type: pearson_max
value: 0.8083747460970299
name: Pearson Max
- type: spearman_max
value: 0.807329204776433
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.677155205095155
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7285403609275818
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7186860786908915
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6111028790473938
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6110485933503836
name: Cosine Precision
- type: cosine_recall
value: 0.8723528552650796
name: Cosine Recall
- type: cosine_ap
value: 0.73917897685454
name: Cosine Ap
- type: dot_accuracy
value: 0.6382591553567367
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 228.40408325195312
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.706771220880316
name: Dot F1
- type: dot_f1_threshold
value: 177.3942108154297
name: Dot F1 Threshold
- type: dot_precision
value: 0.5811370481927711
name: Dot Precision
- type: dot_recall
value: 0.9017087775668176
name: Dot Recall
- type: dot_ap
value: 0.6903597943138529
name: Dot Ap
- type: manhattan_accuracy
value: 0.6635074683448328
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 174.62747192382812
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7054413268204022
name: Manhattan F1
- type: manhattan_f1_threshold
value: 232.6788330078125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5771911887721908
name: Manhattan Precision
- type: manhattan_recall
value: 0.906966554695487
name: Manhattan Recall
- type: manhattan_ap
value: 0.7282119371967055
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6650997042990371
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 13.422540664672852
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7067711563398544
name: Euclidean F1
- type: euclidean_f1_threshold
value: 17.634807586669922
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5755739210284665
name: Euclidean Precision
- type: euclidean_recall
value: 0.9154374178472323
name: Euclidean Recall
- type: euclidean_ap
value: 0.730311832588485
name: Euclidean Ap
- type: max_accuracy
value: 0.677155205095155
name: Max Accuracy
- type: max_accuracy_threshold
value: 228.40408325195312
name: Max Accuracy Threshold
- type: max_f1
value: 0.7186860786908915
name: Max F1
- type: max_f1_threshold
value: 232.6788330078125
name: Max F1 Threshold
- type: max_precision
value: 0.6110485933503836
name: Max Precision
- type: max_recall
value: 0.9154374178472323
name: Max Recall
- type: max_ap
value: 0.73917897685454
name: Max Ap
SentenceTransformer based on microsoft/deberta-v3-xsmall
This is a sentence-transformers model finetuned from microsoft/deberta-v3-xsmall on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-xsmall
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03")
# Run inference
sentences = [
'in each square',
'It is widespread.',
'A young girl flips an omelet.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7972 |
spearman_cosine | 0.807 |
pearson_manhattan | 0.8079 |
spearman_manhattan | 0.8072 |
pearson_euclidean | 0.8084 |
spearman_euclidean | 0.8073 |
pearson_dot | 0.7029 |
spearman_dot | 0.6909 |
pearson_max | 0.8084 |
spearman_max | 0.8073 |
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6772 |
cosine_accuracy_threshold | 0.7285 |
cosine_f1 | 0.7187 |
cosine_f1_threshold | 0.6111 |
cosine_precision | 0.611 |
cosine_recall | 0.8724 |
cosine_ap | 0.7392 |
dot_accuracy | 0.6383 |
dot_accuracy_threshold | 228.4041 |
dot_f1 | 0.7068 |
dot_f1_threshold | 177.3942 |
dot_precision | 0.5811 |
dot_recall | 0.9017 |
dot_ap | 0.6904 |
manhattan_accuracy | 0.6635 |
manhattan_accuracy_threshold | 174.6275 |
manhattan_f1 | 0.7054 |
manhattan_f1_threshold | 232.6788 |
manhattan_precision | 0.5772 |
manhattan_recall | 0.907 |
manhattan_ap | 0.7282 |
euclidean_accuracy | 0.6651 |
euclidean_accuracy_threshold | 13.4225 |
euclidean_f1 | 0.7068 |
euclidean_f1_threshold | 17.6348 |
euclidean_precision | 0.5756 |
euclidean_recall | 0.9154 |
euclidean_ap | 0.7303 |
max_accuracy | 0.6772 |
max_accuracy_threshold | 228.4041 |
max_f1 | 0.7187 |
max_f1_threshold | 232.6788 |
max_precision | 0.611 |
max_recall | 0.9154 |
max_ap | 0.7392 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
0
Children smiling and waving at camera
There are children present
0
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 7.5e-05num_train_epochs
: 2warmup_ratio
: 0.25save_safetensors
: Falsefp16
: Truepush_to_hub
: Truehub_model_id
: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03nhub_strategy
: checkpoint
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 7.5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.25warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03nhub_strategy
: checkpointhub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_ap | sts-dev_spearman_cosine |
---|---|---|---|---|---|
None | 0 | - | 3.7624 | 0.5721 | 0.4168 |
0.0501 | 246 | 3.3825 | - | - | - |
0.1002 | 492 | 1.8307 | - | - | - |
0.1500 | 737 | - | 1.0084 | 0.7024 | - |
0.1502 | 738 | 1.055 | - | - | - |
0.2003 | 984 | 0.7961 | - | - | - |
0.2504 | 1230 | 0.6859 | - | - | - |
0.3001 | 1474 | - | 0.7410 | 0.7191 | - |
0.3005 | 1476 | 0.5914 | - | - | - |
0.3506 | 1722 | 0.5324 | - | - | - |
0.4007 | 1968 | 0.5077 | - | - | - |
0.4501 | 2211 | - | 0.6152 | 0.7144 | - |
0.4507 | 2214 | 0.4647 | - | - | - |
0.5008 | 2460 | 0.4443 | - | - | - |
0.5509 | 2706 | 0.4169 | - | - | - |
0.6002 | 2948 | - | 0.5820 | 0.7207 | - |
0.6010 | 2952 | 0.3831 | - | - | - |
0.6511 | 3198 | 0.393 | - | - | - |
0.7011 | 3444 | 0.3654 | - | - | - |
0.7502 | 3685 | - | 0.5284 | 0.7264 | - |
0.7512 | 3690 | 0.344 | - | - | - |
0.8013 | 3936 | 0.3336 | - | - | - |
0.8514 | 4182 | 0.3382 | - | - | - |
0.9002 | 4422 | - | 0.4911 | 0.7294 | - |
0.9015 | 4428 | 0.3182 | - | - | - |
0.9515 | 4674 | 0.3213 | - | - | - |
1.0016 | 4920 | 0.3032 | - | - | - |
1.0503 | 5159 | - | 0.4777 | 0.7325 | - |
1.0517 | 5166 | 0.2526 | - | - | - |
1.1018 | 5412 | 0.2652 | - | - | - |
1.1519 | 5658 | 0.2538 | - | - | - |
1.2003 | 5896 | - | 0.4569 | 0.7331 | - |
1.2020 | 5904 | 0.2454 | - | - | - |
1.2520 | 6150 | 0.2528 | - | - | - |
1.3021 | 6396 | 0.2448 | - | - | - |
1.3504 | 6633 | - | 0.4334 | 0.7370 | - |
1.3522 | 6642 | 0.2282 | - | - | - |
1.4023 | 6888 | 0.2295 | - | - | - |
1.4524 | 7134 | 0.2313 | - | - | - |
1.5004 | 7370 | - | 0.4237 | 0.7342 | - |
1.5024 | 7380 | 0.2218 | - | - | - |
1.5525 | 7626 | 0.2246 | - | - | - |
1.6026 | 7872 | 0.218 | - | - | - |
1.6504 | 8107 | - | 0.4102 | 0.7388 | - |
1.6527 | 8118 | 0.2095 | - | - | - |
1.7028 | 8364 | 0.2114 | - | - | - |
1.7529 | 8610 | 0.2063 | - | - | - |
1.8005 | 8844 | - | 0.4075 | 0.7370 | - |
1.8029 | 8856 | 0.1968 | - | - | - |
1.8530 | 9102 | 0.2061 | - | - | - |
1.9031 | 9348 | 0.2089 | - | - | - |
1.9505 | 9581 | - | 0.3978 | 0.7395 | - |
1.9532 | 9594 | 0.2005 | - | - | - |
2.0 | 9824 | - | 0.3963 | 0.7392 | - |
None | 0 | - | 1.5506 | - | 0.8070 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}