bofenghuang's picture
up
acd8b56
---
license: apache-2.0
language: de
library_name: transformers
thumbnail: null
tags:
- automatic-speech-recognition
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Fine-tuned whisper-small model for ASR in German
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: de
split: test
args: de
metrics:
- name: WER (Greedy)
type: wer
value: 11.35
---
<style>
img {
display: inline;
}
</style>
![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey)
![Model size](https://img.shields.io/badge/Params-244M-lightgrey)
![Language](https://img.shields.io/badge/Language-German-lightgrey)
# Fine-tuned whisper-small model for ASR in German
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small), trained on the mozilla-foundation/common_voice_11_0 de dataset. When using the model make sure that your speech input is also sampled at 16Khz. **This model also predicts casing and punctuation.**
## Performance
*Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).*
| Model | Common Voice 9.0 |
| --- | :---: |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 13.0 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.5 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 6.4 |
*Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).*
| Model | Common Voice 11.0 |
| --- | :---: |
| [bofenghuang/whisper-small-cv11-german](https://huggingface.co/bofenghuang/whisper-small-cv11-german) | 11.35 |
| [bofenghuang/whisper-medium-cv11-german](https://huggingface.co/bofenghuang/whisper-medium-cv11-german) | 7.05 |
| [bofenghuang/whisper-large-v2-cv11-german](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-german) | **5.76** |
## Usage
Inference with 🤗 Pipeline
```python
import torch
from datasets import load_dataset
from transformers import pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-german", device=device)
# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="de", task="transcribe")
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]
# NB: decoding option
# limit the maximum number of generated tokens to 225
pipe.model.config.max_length = 225 + 1
# sampling
# pipe.model.config.do_sample = True
# beam search
# pipe.model.config.num_beams = 5
# return
# pipe.model.config.return_dict_in_generate = True
# pipe.model.config.output_scores = True
# pipe.model.config.num_return_sequences = 5
# Run
generated_sentences = pipe(waveform)["text"]
```
Inference with 🤗 low-level APIs
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-small-cv11-german").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-small-cv11-german", language="german", task="transcribe")
# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="de", task="transcribe")
# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]
# Resample
if sample_rate != model_sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
waveform = resampler(waveform)
# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)
# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search
# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Normalise predicted sentences if necessary
```