|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- billsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart_summarization_pretrained |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: billsum |
|
type: billsum |
|
config: default |
|
split: ca_test |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.5264 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart_summarization_pretrained |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the billsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7402 |
|
- Rouge1: 0.5264 |
|
- Rouge2: 0.2745 |
|
- Rougel: 0.3432 |
|
- Rougelsum: 0.4049 |
|
- Gen Len: 131.0645 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 1.7347 | 1.0 | 989 | 1.6263 | 0.5044 | 0.254 | 0.3219 | 0.3734 | 121.8306 | |
|
| 1.2029 | 2.0 | 1978 | 1.6037 | 0.5278 | 0.2723 | 0.3351 | 0.3977 | 136.4718 | |
|
| 0.8435 | 3.0 | 2967 | 1.6054 | 0.513 | 0.2661 | 0.3357 | 0.3957 | 129.1048 | |
|
| 0.6326 | 4.0 | 3956 | 1.7402 | 0.5264 | 0.2745 | 0.3432 | 0.4049 | 131.0645 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|