lewtun's picture
lewtun HF staff
Add evaluation results on the default config and test split of emotion
ab74ed6
|
raw
history blame
2.98 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.925169929474641
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9185
verified: true
- name: Precision Macro
type: precision
value: 0.8812304360487162
verified: true
- name: Precision Micro
type: precision
value: 0.9185
verified: true
- name: Precision Weighted
type: precision
value: 0.9186256759712246
verified: true
- name: Recall Macro
type: recall
value: 0.8685675449036236
verified: true
- name: Recall Micro
type: recall
value: 0.9185
verified: true
- name: Recall Weighted
type: recall
value: 0.9185
verified: true
- name: F1 Macro
type: f1
value: 0.8737330835692586
verified: true
- name: F1 Micro
type: f1
value: 0.9185
verified: true
- name: F1 Weighted
type: f1
value: 0.9182854700791021
verified: true
- name: loss
type: loss
value: 0.2216690629720688
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2202
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8419 | 1.0 | 250 | 0.3236 | 0.9025 | 0.8999 |
| 0.258 | 2.0 | 500 | 0.2202 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1