llama_mc_finetune
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the truthful_qa dataset. It achieves the following results on the evaluation set:
- Loss: 1.3667
- Accuracy: 0.8476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6688 | 1.0 | 109 | 2.2295 | 0.2988 |
1.044 | 2.0 | 218 | 2.1568 | 0.3354 |
0.3249 | 3.0 | 327 | 0.7980 | 0.7195 |
1.3202 | 4.0 | 436 | 2.2679 | 0.1768 |
1.325 | 5.0 | 545 | 0.9487 | 0.8232 |
0.0001 | 6.0 | 654 | 1.3517 | 0.8171 |
1.8235 | 7.0 | 763 | 1.5762 | 0.7622 |
0.0001 | 8.0 | 872 | 1.5415 | 0.8415 |
0.0 | 9.0 | 981 | 1.1195 | 0.8110 |
0.0 | 10.0 | 1090 | 1.2257 | 0.8232 |
0.0 | 11.0 | 1199 | 1.3680 | 0.8171 |
0.0 | 12.0 | 1308 | 1.3485 | 0.8171 |
0.0 | 13.0 | 1417 | 1.3482 | 0.8171 |
0.0 | 14.0 | 1526 | 1.3481 | 0.8171 |
0.0 | 15.0 | 1635 | 1.3628 | 0.8415 |
0.0 | 16.0 | 1744 | 1.3643 | 0.8476 |
0.0 | 17.0 | 1853 | 1.3649 | 0.8476 |
0.0 | 18.0 | 1962 | 1.3659 | 0.8476 |
0.0 | 19.0 | 2071 | 1.3663 | 0.8476 |
0.0 | 20.0 | 2180 | 1.3667 | 0.8476 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.14.1
Model tree for brettbbb/llama_mc_finetune
Base model
meta-llama/Llama-2-7b-hf