Updated some change missing in this

#1
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -64,7 +64,9 @@ pip install diffusers
64
  ```py
65
  from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
66
  import torch
67
-
 
 
68
  controlnet = ControlNetModel.from_pretrained(
69
  "briaai/ControlNet-Canny",
70
  torch_dtype=torch.float16
@@ -80,12 +82,15 @@ pipe.to("cuda")
80
  prompt = "A portrait of a Beautiful and playful ethereal singer, golden designs, highly detailed, blurry background"
81
  negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
82
 
 
 
 
83
  # Calculate Canny image
84
  input_image = cv2.imread('pics/singer.png')
85
- input_image = cv2.Canny(input_image, low_threshold, high_threshold)
86
  input_image = input_image[:, :, None]
87
- input_image = np.concatenate([input_image, input_image, input_image], axis=2)
88
- canny_image = Image.fromarray(image)
89
 
90
  image = pipe(prompt=prompt, negative_prompt=negative_prompt, image=canny_image, controlnet_conditioning_scale=1.0, height=1024, width=1024).images[0]
91
  ```
 
64
  ```py
65
  from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
66
  import torch
67
+ import cv2
68
+ from PIL import Image
69
+ import numpy as np
70
  controlnet = ControlNetModel.from_pretrained(
71
  "briaai/ControlNet-Canny",
72
  torch_dtype=torch.float16
 
82
  prompt = "A portrait of a Beautiful and playful ethereal singer, golden designs, highly detailed, blurry background"
83
  negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
84
 
85
+
86
+ low_threshold=100
87
+ high_threshold=200
88
  # Calculate Canny image
89
  input_image = cv2.imread('pics/singer.png')
90
+ canny_image = cv2.Canny(input_image, low_threshold, high_threshold)
91
  input_image = input_image[:, :, None]
92
+ input_image = np.concatenate([input_image, canny_image, input_image], axis=2)
93
+ canny_image = Image.fromarray(canny_image)
94
 
95
  image = pipe(prompt=prompt, negative_prompt=negative_prompt, image=canny_image, controlnet_conditioning_scale=1.0, height=1024, width=1024).images[0]
96
  ```