File size: 2,146 Bytes
a924c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import numpy as np
from skimage import io
from glob import glob
from tqdm import tqdm
import cv2
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from models import ISNetDIS


if __name__ == "__main__":
    dataset_path="input_images"  #Your dataset path 
    model_path="model.pth"    
    result_path="output_results"  #The folder path that you want to save the results
    
    if not os.path.exists(result_path):
        os.makedirs(result_path)

    input_size=[1024,1024]
    net=ISNetDIS()

    if torch.cuda.is_available():
        net.load_state_dict(torch.load(model_path))
        net=net.cuda()
    else:
        net.load_state_dict(torch.load(model_path,map_location="cpu"))
    net.eval()    

    im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF")
    with torch.no_grad():
        for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
            print("im_path: ", im_path)
            im = io.imread(im_path)
            if len(im.shape) < 3:
                im = im[:, :, np.newaxis]
            im_shp=im.shape[0:2]
            im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
            im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8)
            image = torch.divide(im_tensor,255.0)
            image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])

            if torch.cuda.is_available():
                image=image.cuda()

            result=net(image)
            result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
            ma = torch.max(result)
            mi = torch.min(result)
            result = (result-mi)/(ma-mi)
            im_name=im_path.split('/')[-1].split('.')[0]
            cv2.imwrite(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))