|
--- |
|
license: apache-2.0 |
|
tags: |
|
- mlm |
|
- generated_from_trainer |
|
model-index: |
|
- name: article2keyword2.1b_paraphrase-multilingual-MiniLM-L12-v2_finetuned_for_mlm |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# article2keyword2.1b_paraphrase-multilingual-MiniLM-L12-v2_finetuned_for_mlm |
|
|
|
This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0673 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 16 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 2.3777 | 1.0 | 1353 | 0.3168 | |
|
| 0.2358 | 2.0 | 2706 | 0.1564 | |
|
| 0.1372 | 3.0 | 4059 | 0.1149 | |
|
| 0.1046 | 4.0 | 5412 | 0.0956 | |
|
| 0.086 | 5.0 | 6765 | 0.0853 | |
|
| 0.0741 | 6.0 | 8118 | 0.0786 | |
|
| 0.0653 | 7.0 | 9471 | 0.0750 | |
|
| 0.0594 | 8.0 | 10824 | 0.0726 | |
|
| 0.0542 | 9.0 | 12177 | 0.0699 | |
|
| 0.0504 | 10.0 | 13530 | 0.0692 | |
|
| 0.047 | 11.0 | 14883 | 0.0684 | |
|
| 0.0444 | 12.0 | 16236 | 0.0675 | |
|
| 0.0423 | 13.0 | 17589 | 0.0674 | |
|
| 0.0404 | 14.0 | 18942 | 0.0673 | |
|
| 0.0392 | 15.0 | 20295 | 0.0672 | |
|
| 0.0379 | 16.0 | 21648 | 0.0673 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|