File size: 1,746 Bytes
8b5c6ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: intfloat/multilingual-e5-small
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: digidawfinal_E5small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# digidawfinal_E5small
This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6421
- Accuracy: 0.809
- Precision: 0.3047
- Recall: 0.3371
- F1: 0.3118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.3384 | 1.0 | 157 | 0.7615 | 0.803 | 0.1933 | 0.1749 | 0.1757 |
| 1.0082 | 2.0 | 314 | 0.6585 | 0.804 | 0.3053 | 0.3368 | 0.3102 |
| 0.8286 | 3.0 | 471 | 0.6421 | 0.809 | 0.3047 | 0.3371 | 0.3118 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|