Edit model card

Model card for MobileNetV4_Conv_Large_TFLite_256

A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.

Converted to TFLite Float32 & Float16 formats by Youssef Boulaouane.

Model Details

Model Usage

Image Classification in Python

import numpy as np
import tensorflow as tf
from PIL import Image

# Load label file
with open('imagenet_classes.txt', 'r') as file:
    lines = file.readlines()

index_to_label = {index: line.strip() for index, line in enumerate(lines)}

# Initialize interpreter and IO details
tfl_model = tf.lite.Interpreter(model_path=tf_model_path)
tfl_model.allocate_tensors()
input_details = tfl_model.get_input_details()
output_details = tfl_model.get_output_details()

# Load and preprocess the image
image = Image.open(image_path).resize((256, 256), Image.BICUBIC)

image = np.array(image, dtype=np.float32)
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
image = (image / 255.0 - mean) / std

image = np.expand_dims(image, axis=-1)
image = np.rollaxis(image, 3)

# Inference and postprocessing
input = input_details[0]
tfl_model.set_tensor(input["index"], image)
tfl_model.invoke()

tfl_output = tfl_model.get_tensor(output_details[0]["index"])
tfl_output_tensor = tf.convert_to_tensor(tfl_output)
tfl_softmax_output = tf.nn.softmax(tfl_output_tensor, axis=1)

tfl_top5_probs, tfl_top5_indices = tf.math.top_k(tfl_softmax_output, k=5)

# Get the top5 class labels and probabilities
tfl_probs_list = tfl_top5_probs[0].numpy().tolist()
tfl_index_list = tfl_top5_indices[0].numpy().tolist()

for index, prob in zip(tfl_index_list, tfl_probs_list):
    print(f"{index_to_label[index]}: {round(prob*100, 2)}%")

Deployment on Mobile

Refer to guides available here: https://ai.google.dev/edge/lite/inference

Citation

@article{qin2024mobilenetv4,
  title={MobileNetV4-Universal Models for the Mobile Ecosystem},
  author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
  journal={arXiv preprint arXiv:2404.10518},
  year={2024}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train byoussef/MobileNetV4_Conv_Large_TFLite_256

Space using byoussef/MobileNetV4_Conv_Large_TFLite_256 1

Collection including byoussef/MobileNetV4_Conv_Large_TFLite_256