Qwen2.5-0.5B-business / QwenChat.py
caelancooper's picture
Upload 12 files
c4e9412 verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from rich.console import Console
from rich.markdown import Markdown
from rich.panel import Panel
from rich.progress import Progress
import time
import os
import json
from typing import List, Tuple, Dict, Optional
from dataclasses import dataclass, field
from datetime import datetime
import numpy as np
from threading import Lock
import gc
import logging
from contextlib import contextmanager
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('chat_system.log'),
logging.StreamHandler()
]
)
@dataclass
class ConversationTurn:
"""Represents a single turn in the conversation."""
role: str
content: str
timestamp: float = field(default_factory=time.time)
token_count: int = 0
class TokenManager:
"""Manages token counting and context window optimization."""
def __init__(self, tokenizer, max_context_tokens: int = 4096):
self.tokenizer = tokenizer
self.max_context_tokens = max_context_tokens
self._token_count_cache = {}
self.cache_lock = Lock()
def count_tokens(self, text: str) -> int:
"""Count tokens with caching for efficiency."""
with self.cache_lock:
if text not in self._token_count_cache:
tokens = self.tokenizer.encode(text, add_special_tokens=True)
self._token_count_cache[text] = len(tokens)
return self._token_count_cache[text]
def optimize_context(self, turns: List[ConversationTurn], max_turns: int = 10) -> List[ConversationTurn]:
"""Optimize context window while maintaining coherence."""
total_tokens = 0
optimized_turns = []
# Always include the last turn
if turns:
last_turn = turns[-1]
total_tokens += last_turn.token_count
optimized_turns.append(last_turn)
# Add previous turns while respecting token limit
for turn in reversed(turns[:-1]):
if total_tokens + turn.token_count > self.max_context_tokens:
break
if len(optimized_turns) >= max_turns:
break
total_tokens += turn.token_count
optimized_turns.insert(0, turn)
return optimized_turns
class ConversationManager:
"""Manages conversation state and history."""
def __init__(self, token_manager: TokenManager):
self.token_manager = token_manager
self.turns: List[ConversationTurn] = []
self.system_prompt = """You are a highly capable AI assistant with expertise in business and technical domains.
You provide detailed, well-reasoned responses while maintaining a professional tone.
Focus on delivering accurate, contextual information without repeating previous conversation details."""
self.system_tokens = token_manager.count_tokens(self.system_prompt)
def add_turn(self, role: str, content: str):
"""Add a new conversation turn with token counting."""
turn = ConversationTurn(
role=role,
content=content,
token_count=self.token_manager.count_tokens(content)
)
self.turns.append(turn)
def get_prompt(self, include_system: bool = True) -> str:
"""Generate optimized prompt for model input."""
optimized_turns = self.token_manager.optimize_context(self.turns)
components = []
if include_system:
components.append(f"System: {self.system_prompt}")
for turn in optimized_turns:
role_prefix = "Human" if turn.role == "user" else "Assistant"
components.append(f"{role_prefix}: {turn.content}")
return "\n\n".join(components)
class ResponseGenerator:
"""Handles model inference and response generation."""
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = next(model.parameters()).device
# Enhanced generation parameters
self.base_params = {
'do_sample': True,
'top_k': 50,
'top_p': 0.95,
'temperature': 0.8,
'repetition_penalty': 1.1,
'no_repeat_ngram_size': 4,
'num_beams': 2,
'early_stopping': True,
'length_penalty': 1.2,
'bad_words_ids': None,
'min_length': 10,
'use_cache': True,
}
@contextmanager
def inference_mode(self):
"""Context manager for inference optimization."""
torch.cuda.empty_cache()
gc.collect()
try:
with torch.inference_mode():
yield
finally:
torch.cuda.empty_cache()
gc.collect()
def calculate_dynamic_length(self, input_text: str, conversation_length: int) -> int:
"""Calculate dynamic response length based on input and conversation context."""
input_tokens = len(self.tokenizer.encode(input_text))
base_length = max(100, input_tokens * 2)
# Scale based on conversation complexity
complexity_factor = min(2.0, 1.0 + (conversation_length / 20))
dynamic_length = int(base_length * complexity_factor)
# Ensure length is within reasonable bounds
return min(max(dynamic_length, 100), 2048)
def generate_response(self, prompt: str, conversation_length: int) -> str:
"""Generate response with dynamic length and advanced parameters."""
with self.inference_mode():
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=4096
).to(self.device)
max_new_tokens = self.calculate_dynamic_length(prompt, conversation_length)
generation_params = {
**self.base_params,
'max_new_tokens': max_new_tokens,
'pad_token_id': self.tokenizer.pad_token_id,
'eos_token_id': self.tokenizer.eos_token_id,
}
outputs = self.model.generate(
**inputs,
**generation_params
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
response_parts = response.split("Assistant:")
if len(response_parts) > 1:
response = response_parts[-1].strip()
return response
class EnterpriseQwenChat:
"""Main chat interface with enterprise-grade features."""
def __init__(self, model_directory: str = "./qwen"):
self.console = Console()
self.model_directory = model_directory
self.setup_components()
def setup_components(self):
"""Initialize components with CUDA support."""
try:
self.console.print("Initializing Enterprise Qwen Chat...", style="bold yellow")
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with CUDA optimizations
config = AutoConfig.from_pretrained(os.path.join(self.model_directory, "config.json"))
self.model = AutoModelForCausalLM.from_pretrained(
self.model_directory,
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
)
# Move model to GPU if available
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
# Initialize managers
self.token_manager = TokenManager(self.tokenizer)
self.conversation_manager = ConversationManager(self.token_manager)
self.response_generator = ResponseGenerator(self.model, self.tokenizer)
self.console.print("[bold green]System initialized successfully![/bold green]")
except Exception as e:
logging.error(f"Initialization failed: {str(e)}")
raise
def save_conversation(self) -> str:
"""Save conversation with metadata."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f'conversation_{timestamp}.json'
conversation_data = {
'timestamp': timestamp,
'turns': [
{
'role': turn.role,
'content': turn.content,
'timestamp': turn.timestamp,
'token_count': turn.token_count
}
for turn in self.conversation_manager.turns
],
'metadata': {
'total_turns': len(self.conversation_manager.turns),
'total_tokens': sum(turn.token_count for turn in self.conversation_manager.turns)
}
}
with open(filename, 'w', encoding='utf-8') as f:
json.dump(conversation_data, f, indent=2)
return filename
def run(self):
"""Run the chat interface with enhanced features."""
self.console.print(Panel.fit(
"[bold green]Enterprise Qwen Chat System[/bold green]\n"
"[italic]Commands:\n"
"- 'exit' or 'quit': End conversation\n"
"- 'save': Save conversation\n"
"- 'clear': Clear conversation history[/italic]"
))
while True:
try:
user_input = self.console.input("[bold cyan]You:[/bold cyan] ").strip()
if user_input.lower() in ['exit', 'quit']:
log_file = self.save_conversation()
self.console.print(f"Conversation saved to: {log_file}", style="bold green")
break
if user_input.lower() == 'save':
log_file = self.save_conversation()
self.console.print(f"Conversation saved to: {log_file}", style="bold green")
continue
if user_input.lower() == 'clear':
self.conversation_manager.turns.clear()
self.console.print("Conversation history cleared.", style="bold yellow")
continue
# Process user input
self.conversation_manager.add_turn("user", user_input)
# Generate and display response
with self.console.status("[bold yellow]Generating response...[/bold yellow]"):
start_time = time.time()
prompt = self.conversation_manager.get_prompt()
response = self.response_generator.generate_response(
prompt,
len(self.conversation_manager.turns)
)
self.conversation_manager.add_turn("assistant", response)
end_time = time.time()
self.console.print(Markdown(f"**AI:** {response}"))
self.console.print(
f"[italic grey](Generated in {end_time - start_time:.2f} seconds)[/italic grey]\n"
)
except KeyboardInterrupt:
self.console.print("\nGracefully shutting down...", style="bold yellow")
self.save_conversation()
break
except Exception as e:
logging.error(f"Error during chat: {str(e)}")
self.console.print(
"[bold red]An error occurred. The conversation has been saved.[/bold red]"
)
self.save_conversation()
break
if __name__ == "__main__":
chat = EnterpriseQwenChat()
chat.run()