language: id | |
tags: | |
- pipeline:summarization | |
- summarization | |
- bert2bert | |
datasets: | |
- id_liputan6 | |
license: apache-2.0 | |
# Indonesian BERT2BERT Summarization Model | |
Finetuned BERT-base summarization model for Indonesian. | |
## Finetuning Corpus | |
`bert2bert-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. | |
## Load Finetuned Model | |
```python | |
from transformers import BertTokenizer, EncoderDecoderModel | |
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") | |
tokenizer.bos_token = tokenizer.cls_token | |
tokenizer.eos_token = tokenizer.sep_token | |
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") | |
``` | |
## Code Sample | |
```python | |
from transformers import BertTokenizer, EncoderDecoderModel | |
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") | |
tokenizer.bos_token = tokenizer.cls_token | |
tokenizer.eos_token = tokenizer.sep_token | |
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") | |
# | |
ARTICLE_TO_SUMMARIZE = "" | |
# generate summary | |
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') | |
summary_ids = model.generate(input_ids, | |
min_length=20, | |
max_length=80, | |
num_beams=10, | |
repetition_penalty=2.5, | |
length_penalty=1.0, | |
early_stopping=True, | |
no_repeat_ngram_size=2, | |
use_cache=True, | |
do_sample = True, | |
temperature = 0.8, | |
top_k = 50, | |
top_p = 0.95) | |
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
print(summary_text) | |
``` | |
Output: | |
``` | |
``` | |