cahya's picture
first commit
5edc210
metadata
language: id
tags:
  - pipeline:summarization
  - summarization
  - bert2gpt
datasets:
  - id_liputan6
license: apache-2.0

Indonesian BERT2BERT Summarization Model

Finetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization.

Finetuning Corpus

bert2gpt-indonesian-summarization model is based on cahya/bert-base-indonesian-1.5G and cahya/gpt2-small-indonesian-522Mby cahya, finetuned using id_liputan6 dataset.

Load Finetuned Model

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization")

Code Sample

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization")

# 
ARTICLE_TO_SUMMARIZE = ""

# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
            min_length=20,
            max_length=80, 
            num_beams=10,
            repetition_penalty=2.5, 
            length_penalty=1.0, 
            early_stopping=True,
            no_repeat_ngram_size=2,
            use_cache=True,
            do_sample = True,
            temperature = 0.8,
            top_k = 50,
            top_p = 0.95)

summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)

Output: