|
--- |
|
language: su |
|
datasets: |
|
- openslr |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Sundanese by cahya |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: OpenSLR High quality TTS data for Sundanese |
|
type: OpenSLR |
|
args: su |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 6.19 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-Sundanese |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) |
|
on the [OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric, Dataset |
|
from datasets.utils.download_manager import DownloadManager |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from pathlib import Path |
|
import pandas as pd |
|
|
|
|
|
def load_dataset_sundanese(): |
|
urls = [ |
|
"https://www.openslr.org/resources/44/su_id_female.zip", |
|
"https://www.openslr.org/resources/44/su_id_male.zip" |
|
] |
|
dm = DownloadManager() |
|
download_dirs = dm.download_and_extract(urls) |
|
data_dirs = [ |
|
Path(download_dirs[0])/"su_id_female/wavs", |
|
Path(download_dirs[1])/"su_id_male/wavs", |
|
] |
|
filenames = [ |
|
Path(download_dirs[0])/"su_id_female/line_index.tsv", |
|
Path(download_dirs[1])/"su_id_male/line_index.tsv", |
|
] |
|
|
|
dfs = [] |
|
|
|
dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) |
|
dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) |
|
|
|
for i, dir in enumerate(data_dirs): |
|
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) |
|
df = pd.concat(dfs) |
|
# df = df.sample(frac=1, random_state=1).reset_index(drop=True) |
|
dataset = Dataset.from_pandas(df) |
|
dataset = dataset.remove_columns('__index_level_0__') |
|
|
|
return dataset.train_test_split(test_size=0.1, seed=1) |
|
|
|
dataset = load_dataset_sundanese() |
|
test_dataset = dataset['test'] |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") |
|
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset[:2]["sentence"]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows or using the [notebook](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb). |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric, Dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets.utils.download_manager import DownloadManager |
|
import re |
|
from pathlib import Path |
|
import pandas as pd |
|
|
|
|
|
def load_dataset_sundanese(): |
|
urls = [ |
|
"https://www.openslr.org/resources/44/su_id_female.zip", |
|
"https://www.openslr.org/resources/44/su_id_male.zip" |
|
] |
|
dm = DownloadManager() |
|
download_dirs = dm.download_and_extract(urls) |
|
data_dirs = [ |
|
Path(download_dirs[0])/"su_id_female/wavs", |
|
Path(download_dirs[1])/"su_id_male/wavs", |
|
] |
|
filenames = [ |
|
Path(download_dirs[0])/"su_id_female/line_index.tsv", |
|
Path(download_dirs[1])/"su_id_male/line_index.tsv", |
|
] |
|
|
|
dfs = [] |
|
|
|
dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) |
|
dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) |
|
|
|
for i, dir in enumerate(data_dirs): |
|
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) |
|
df = pd.concat(dfs) |
|
# df = df.sample(frac=1, random_state=1).reset_index(drop=True) |
|
dataset = Dataset.from_pandas(df) |
|
dataset = dataset.remove_columns('__index_level_0__') |
|
|
|
return dataset.train_test_split(test_size=0.1, seed=1) |
|
|
|
dataset = load_dataset_sundanese() |
|
test_dataset = dataset['test'] |
|
|
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") |
|
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result**: 6.19 % |
|
|
|
## Training |
|
|
|
[OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/) was used for training. |
|
The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb) |
|
and to [evaluate it](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb) |
|
|