|
--- |
|
language: lg |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- common_voice |
|
- hf-asr-leaderboard |
|
- lg |
|
- robust-speech-event |
|
- speech |
|
license: apache-2.0 |
|
model-index: |
|
- name: Wav2Vec2 Luganda by Indonesian-NLP |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice lg |
|
type: common_voice |
|
args: lg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 9.332 |
|
- name: Test CER |
|
type: cer |
|
value: 1.987 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: lg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 13.844 |
|
- name: Test CER |
|
type: cer |
|
value: 2.68 |
|
--- |
|
|
|
# Automatic Speech Recognition for Luganda |
|
|
|
This is the model built for the |
|
[Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition). |
|
It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) |
|
model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0. |
|
|
|
We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model. |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") |
|
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
if "audio" in batch: |
|
speech_array = torch.tensor(batch["audio"]["array"]) |
|
else: |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset[:2]["sentence"]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Indonesian test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") |
|
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") |
|
model.to("cuda") |
|
|
|
chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"] |
|
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
if "audio" in batch: |
|
speech_array = torch.tensor(batch["audio"]["array"]) |
|
else: |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
WER without KenLM: 15.38 % |
|
|
|
WER With KenLM: |
|
|
|
**Test Result**: 7.53 % |
|
|
|
## Training |
|
|
|
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO |
|
|
|
The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr) |
|
|