metadata
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: hc-mistral-alpaca
results: []
See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
lora_fan_in_fan_out: false
data_seed: 49
seed: 49
datasets:
- path: sample_data/alpaca_synth_queries.jsonl
type: sharegpt
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-out
hub_model_id: caldana/hc-mistral-alpaca
adapter: qlora
lora_model_dir:
sequence_len: 896
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
gradient_accumulation_steps: 4
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 100
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
save_total_limit: 12
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 20
evals_per_epoch: 3
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 6
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
save_safetensors: true
hc-mistral-alpaca
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 49
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.334 | 0.6667 | 1 | 1.2849 |
1.3476 | 1.3333 | 2 | 1.2780 |
1.2981 | 2.0 | 3 | 1.2487 |
1.3157 | 2.6667 | 4 | 1.1840 |
1.1757 | 3.3333 | 5 | 1.0690 |
1.1376 | 4.0 | 6 | 0.9086 |
0.9395 | 4.6667 | 7 | 0.7184 |
0.7385 | 5.3333 | 8 | 0.5617 |
0.5541 | 6.0 | 9 | 0.4307 |
0.4056 | 6.6667 | 10 | 0.3257 |
0.2791 | 7.3333 | 11 | 0.2866 |
0.2198 | 8.0 | 12 | 0.2453 |
0.1746 | 8.6667 | 13 | 0.2167 |
0.1582 | 9.3333 | 14 | 0.2104 |
0.1515 | 10.0 | 15 | 0.1699 |
0.1168 | 10.6667 | 16 | 0.1502 |
0.087 | 11.3333 | 17 | 0.1415 |
0.1 | 12.0 | 18 | 0.1574 |
0.0832 | 12.6667 | 19 | 0.1699 |
0.0765 | 13.3333 | 20 | 0.1601 |
0.0697 | 14.0 | 21 | 0.1544 |
0.0625 | 14.6667 | 22 | 0.1653 |
0.0583 | 15.3333 | 23 | 0.1628 |
0.047 | 16.0 | 24 | 0.1463 |
0.0366 | 16.6667 | 25 | 0.1637 |
0.0342 | 17.3333 | 26 | 0.2020 |
0.0398 | 18.0 | 27 | 0.1801 |
0.0319 | 18.6667 | 28 | 0.1835 |
0.0229 | 19.3333 | 29 | 0.1957 |
0.0286 | 20.0 | 30 | 0.2024 |
0.0166 | 20.6667 | 31 | 0.2519 |
0.0184 | 21.3333 | 32 | 0.2699 |
0.0129 | 22.0 | 33 | 0.2813 |
0.0109 | 22.6667 | 34 | 0.2950 |
0.0105 | 23.3333 | 35 | 0.3037 |
0.0111 | 24.0 | 36 | 0.3161 |
0.0071 | 24.6667 | 37 | 0.3310 |
0.0115 | 25.3333 | 38 | 0.3375 |
0.0051 | 26.0 | 39 | 0.3456 |
0.004 | 26.6667 | 40 | 0.3488 |
0.0077 | 27.3333 | 41 | 0.3599 |
0.0028 | 28.0 | 42 | 0.3706 |
0.0021 | 28.6667 | 43 | 0.3737 |
0.002 | 29.3333 | 44 | 0.3729 |
0.0017 | 30.0 | 45 | 0.3742 |
0.0013 | 30.6667 | 46 | 0.3757 |
0.0004 | 31.3333 | 47 | 0.3755 |
0.0006 | 32.0 | 48 | 0.3764 |
0.0002 | 32.6667 | 49 | 0.3750 |
0.0011 | 33.3333 | 50 | 0.3646 |
0.0005 | 34.0 | 51 | 0.3586 |
0.0013 | 34.6667 | 52 | 0.3617 |
0.0005 | 35.3333 | 53 | 0.3638 |
0.0011 | 36.0 | 54 | 0.3657 |
0.0003 | 36.6667 | 55 | 0.3710 |
0.0002 | 37.3333 | 56 | 0.3711 |
0.0004 | 38.0 | 57 | 0.3736 |
0.0003 | 38.6667 | 58 | 0.3784 |
0.0001 | 39.3333 | 59 | 0.3795 |
0.0007 | 40.0 | 60 | 0.3737 |
0.0001 | 40.6667 | 61 | 0.3730 |
0.0003 | 41.3333 | 62 | 0.3729 |
0.0002 | 42.0 | 63 | 0.3714 |
0.0001 | 42.6667 | 64 | 0.3698 |
0.0001 | 43.3333 | 65 | 0.3704 |
0.0001 | 44.0 | 66 | 0.3704 |
0.0001 | 44.6667 | 67 | 0.3705 |
0.0001 | 45.3333 | 68 | 0.3655 |
0.0002 | 46.0 | 69 | 0.3672 |
0.0002 | 46.6667 | 70 | 0.3682 |
0.0002 | 47.3333 | 71 | 0.3656 |
0.0001 | 48.0 | 72 | 0.3663 |
0.0001 | 48.6667 | 73 | 0.3668 |
0.0001 | 49.3333 | 74 | 0.3673 |
0.0001 | 50.0 | 75 | 0.3638 |
0.0001 | 50.6667 | 76 | 0.3640 |
0.0001 | 51.3333 | 77 | 0.3643 |
0.0001 | 52.0 | 78 | 0.3640 |
0.0001 | 52.6667 | 79 | 0.3648 |
0.0001 | 53.3333 | 80 | 0.3629 |
0.0001 | 54.0 | 81 | 0.3648 |
0.0001 | 54.6667 | 82 | 0.3617 |
0.0001 | 55.3333 | 83 | 0.3632 |
0.0001 | 56.0 | 84 | 0.3650 |
0.0001 | 56.6667 | 85 | 0.3636 |
0.0001 | 57.3333 | 86 | 0.3633 |
0.0001 | 58.0 | 87 | 0.3673 |
0.0001 | 58.6667 | 88 | 0.3663 |
0.0001 | 59.3333 | 89 | 0.3618 |
0.0001 | 60.0 | 90 | 0.3635 |
0.0001 | 60.6667 | 91 | 0.3605 |
0.0001 | 61.3333 | 92 | 0.3654 |
0.0001 | 62.0 | 93 | 0.3647 |
0.0001 | 62.6667 | 94 | 0.3586 |
0.0001 | 63.3333 | 95 | 0.3601 |
0.0001 | 64.0 | 96 | 0.3631 |
0.0001 | 64.6667 | 97 | 0.3629 |
0.0001 | 65.3333 | 98 | 0.3652 |
0.0001 | 66.0 | 99 | 0.3645 |
0.0001 | 66.6667 | 100 | 0.3648 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1