File size: 6,334 Bytes
b74d412
 
cf6235a
 
 
 
 
 
 
 
 
a998317
 
b74d412
958fab0
cf6235a
 
958fab0
cf6235a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
958fab0
 
 
 
 
 
 
 
 
cf6235a
 
 
958fab0
cf6235a
 
 
 
 
 
 
 
958fab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6235a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
license: cc-by-4.0
datasets:
- calm-and-collected/wish_you_were_here
language:
- en
pipeline_tag: text-to-image
tags:
- art
- vintage
- postcard
- lora
- diffuser
---
# Wish You Were Here - a Stable diffusion 1.5 LORA for vintage postcard replication

<!-- Provide a quick summary of what the model is/does. -->
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6537927953b7eb25ce03c962/d97rlp7IYnBcKPYQuCpBi.png)

Wish you were here is a LORA model developped to create vintage postcard images. The model was trained on Stable Diffusion 1.5.

### Model Description

<!-- Provide a longer summary of what this model is. -->
Wish You Were Here (WYWH) is a LORA model developped to replicate the look and feel of vintage postcards. This is done via harvesting public domain images from WikiMedia via
manual review and using a combination of manual and automated annotation to describe the images. The specific feature desired to extract were: color, damage and printing
technique. The model was developped over a duration of 2 days over 100 epochs of which one epoch was taken as resulting image.


- **Developed by:** calm-and-collected
- **Model type:** LORA
- **License:** CC-BY 4.0
- **Finetuned from model [optional]:** Stable diffusion 1.5 pruned

## Bias, Risks, and Limitations

The model is trained of images from ~650 images. From observation, the majority of these images are from american origins. The model is thus excelent at replicating USA
destinations. The model will also replicate damage seen in the images.

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

To use the WYWH model, use your favorite Stable Diffusion model (the recommended model is a realistic model) and use the LORA along with the following triggers:
- WYWH (the base trigger)
- Photograph (for photography postcards)
- Drawing (for drawn postcards)
- Damage (to add scratch and water damage to the generation)
- Monochrome (for black and white images)

For negatives, your can use the following:
- White border (if you do not want a white border)

## How to Get Started with the Model

You can use this model with [automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui), [comfyui](https://github.com/comfyanonymous/ComfyUI) and [sdnext](https://github.com/vladmandic/automatic). 

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The Wish You Were Here dataset consists out of ~650 images of postcards from 1900-1970.
Dataset: [origional dataset](https://huggingface.co/datasets/calm-and-collected/wish_you_were_here "The wish you were here dataset").

### Training Hyperparameters

<details>
  <summary>Kohya_SS paramaters</summary>
  ```js
{
  "LoRA_type": "Standard",
  "adaptive_noise_scale": 0,
  "additional_parameters": "",
  "block_alphas": "",
  "block_dims": "",
  "block_lr_zero_threshold": "",
  "bucket_no_upscale": true,
  "bucket_reso_steps": 64,
  "cache_latents": true,
  "cache_latents_to_disk": true,
  "caption_dropout_every_n_epochs": 0.0,
  "caption_dropout_rate": 0,
  "caption_extension": ".txt",
  "clip_skip": 2,
  "color_aug": false,
  "conv_alpha": 1,
  "conv_block_alphas": "",
  "conv_block_dims": "",
  "conv_dim": 1,
  "decompose_both": false,
  "dim_from_weights": false,
  "down_lr_weight": "",
  "enable_bucket": true,
  "epoch": 1,
  "factor": -1,
  "flip_aug": false,
  "full_bf16": false,
  "full_fp16": false,
  "gradient_accumulation_steps": 1,
  "gradient_checkpointing": false,
  "keep_tokens": "0",
  "learning_rate": 0.0001,
  "logging_dir": "/home/glow/Desktop/ml/whyw_logs",
  "lora_network_weights": "",
  "lr_scheduler": "constant",
  "lr_scheduler_args": "",
  "lr_scheduler_num_cycles": "",
  "lr_scheduler_power": "",
  "lr_warmup": 0,
  "max_bucket_reso": 2048,
  "max_data_loader_n_workers": "1",
  "max_resolution": "512,650",
  "max_timestep": 1000,
  "max_token_length": "75",
  "max_train_epochs": "100",
  "max_train_steps": "",
  "mem_eff_attn": true,
  "mid_lr_weight": "",
  "min_bucket_reso": 256,
  "min_snr_gamma": 0,
  "min_timestep": 0,
  "mixed_precision": "bf16",
  "model_list": "custom",
  "module_dropout": 0.2,
  "multires_noise_discount": 0.2,
  "multires_noise_iterations": 8,
  "network_alpha": 128,
  "network_dim": 256,
  "network_dropout": 0.3,
  "no_token_padding": false,
  "noise_offset": "0.05",
  "noise_offset_type": "Multires",
  "num_cpu_threads_per_process": 2,
  "optimizer": "AdamW8bit",
  "optimizer_args": "",
  "output_dir": "/home/glow/Desktop/ml/whyw_logs/model_v2",
  "output_name": "final_model",
  "persistent_data_loader_workers": false,
  "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5",
  "prior_loss_weight": 1.0,
  "random_crop": false,
  "rank_dropout": 0.2,
  "reg_data_dir": "",
  "resume": "",
  "sample_every_n_epochs": 0,
  "sample_every_n_steps": 0,
  "sample_prompts": "",
  "sample_sampler": "euler_a",
  "save_every_n_epochs": 1,
  "save_every_n_steps": 0,
  "save_last_n_steps": 0,
  "save_last_n_steps_state": 0,
  "save_model_as": "safetensors",
  "save_precision": "bf16",
  "save_state": false,
  "scale_v_pred_loss_like_noise_pred": false,
  "scale_weight_norms": 1,
  "sdxl": false,
  "sdxl_cache_text_encoder_outputs": false,
  "sdxl_no_half_vae": true,
  "seed": "1234",
  "shuffle_caption": false,
  "stop_text_encoder_training": 1,
  "text_encoder_lr": 5e-05,
  "train_batch_size": 3,
  "train_data_dir": "/home/glow/Desktop/wyhw",
  "train_on_input": true,
  "training_comment": "",
  "unet_lr": 0.0001,
  "unit": 1,
  "up_lr_weight": "",
  "use_cp": true,
  "use_wandb": false,
  "v2": false,
  "v_parameterization": false,
  "v_pred_like_loss": 0,
  "vae_batch_size": 0,
  "wandb_api_key": "",
  "weighted_captions": false,
  "xformers": "xformers"
}
  ```
</details>

#### Hardware

The model was trained on two GTX 4090 for a duration of 2 days to extract 100 epochs of the model.

#### Software

The model was trained via the Kohya_SS gui.

## Model Card Contact

Use the community section of this repository to contact me.