|
Collections: |
|
- Name: Dynamic R-CNN |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- Dynamic R-CNN |
|
- FPN |
|
- RPN |
|
- ResNet |
|
- RoIAlign |
|
Paper: |
|
URL: https://arxiv.org/pdf/2004.06002 |
|
Title: 'Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training' |
|
README: configs/dynamic_rcnn/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/roi_heads/dynamic_roi_head.py#L11 |
|
Version: v2.2.0 |
|
|
|
Models: |
|
- Name: dynamic_rcnn_r50_fpn_1x_coco |
|
In Collection: Dynamic R-CNN |
|
Config: configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 3.8 |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 38.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth |
|
|