|
|
|
"""Optimize anchor settings on a specific dataset. |
|
|
|
This script provides two method to optimize YOLO anchors including k-means |
|
anchor cluster and differential evolution. You can use ``--algorithm k-means`` |
|
and ``--algorithm differential_evolution`` to switch two method. |
|
|
|
Example: |
|
Use k-means anchor cluster:: |
|
|
|
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \ |
|
--algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \ |
|
--output-dir ${OUTPUT_DIR} |
|
Use differential evolution to optimize anchors:: |
|
|
|
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \ |
|
--algorithm differential_evolution \ |
|
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \ |
|
--output-dir ${OUTPUT_DIR} |
|
""" |
|
import argparse |
|
import os.path as osp |
|
|
|
import mmcv |
|
import numpy as np |
|
import torch |
|
from mmcv import Config |
|
from scipy.optimize import differential_evolution |
|
|
|
from mmdet.core import bbox_cxcywh_to_xyxy, bbox_overlaps, bbox_xyxy_to_cxcywh |
|
from mmdet.datasets import build_dataset |
|
from mmdet.utils import get_root_logger, replace_cfg_vals, update_data_root |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Optimize anchor parameters.') |
|
parser.add_argument('config', help='Train config file path.') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for calculating.') |
|
parser.add_argument( |
|
'--input-shape', |
|
type=int, |
|
nargs='+', |
|
default=[608, 608], |
|
help='input image size') |
|
parser.add_argument( |
|
'--algorithm', |
|
default='differential_evolution', |
|
help='Algorithm used for anchor optimizing.' |
|
'Support k-means and differential_evolution for YOLO.') |
|
parser.add_argument( |
|
'--iters', |
|
default=1000, |
|
type=int, |
|
help='Maximum iterations for optimizer.') |
|
parser.add_argument( |
|
'--output-dir', |
|
default=None, |
|
type=str, |
|
help='Path to save anchor optimize result.') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
class BaseAnchorOptimizer: |
|
"""Base class for anchor optimizer. |
|
|
|
Args: |
|
dataset (obj:`Dataset`): Dataset object. |
|
input_shape (list[int]): Input image shape of the model. |
|
Format in [width, height]. |
|
logger (obj:`logging.Logger`): The logger for logging. |
|
device (str, optional): Device used for calculating. |
|
Default: 'cuda:0' |
|
out_dir (str, optional): Path to save anchor optimize result. |
|
Default: None |
|
""" |
|
|
|
def __init__(self, |
|
dataset, |
|
input_shape, |
|
logger, |
|
device='cuda:0', |
|
out_dir=None): |
|
self.dataset = dataset |
|
self.input_shape = input_shape |
|
self.logger = logger |
|
self.device = device |
|
self.out_dir = out_dir |
|
bbox_whs, img_shapes = self.get_whs_and_shapes() |
|
ratios = img_shapes.max(1, keepdims=True) / np.array([input_shape]) |
|
|
|
|
|
self.bbox_whs = bbox_whs / ratios |
|
|
|
def get_whs_and_shapes(self): |
|
"""Get widths and heights of bboxes and shapes of images. |
|
|
|
Returns: |
|
tuple[np.ndarray]: Array of bbox shapes and array of image |
|
shapes with shape (num_bboxes, 2) in [width, height] format. |
|
""" |
|
self.logger.info('Collecting bboxes from annotation...') |
|
bbox_whs = [] |
|
img_shapes = [] |
|
prog_bar = mmcv.ProgressBar(len(self.dataset)) |
|
for idx in range(len(self.dataset)): |
|
ann = self.dataset.get_ann_info(idx) |
|
data_info = self.dataset.data_infos[idx] |
|
img_shape = np.array([data_info['width'], data_info['height']]) |
|
gt_bboxes = ann['bboxes'] |
|
for bbox in gt_bboxes: |
|
wh = bbox[2:4] - bbox[0:2] |
|
img_shapes.append(img_shape) |
|
bbox_whs.append(wh) |
|
prog_bar.update() |
|
print('\n') |
|
bbox_whs = np.array(bbox_whs) |
|
img_shapes = np.array(img_shapes) |
|
self.logger.info(f'Collected {bbox_whs.shape[0]} bboxes.') |
|
return bbox_whs, img_shapes |
|
|
|
def get_zero_center_bbox_tensor(self): |
|
"""Get a tensor of bboxes centered at (0, 0). |
|
|
|
Returns: |
|
Tensor: Tensor of bboxes with shape (num_bboxes, 4) |
|
in [xmin, ymin, xmax, ymax] format. |
|
""" |
|
whs = torch.from_numpy(self.bbox_whs).to( |
|
self.device, dtype=torch.float32) |
|
bboxes = bbox_cxcywh_to_xyxy( |
|
torch.cat([torch.zeros_like(whs), whs], dim=1)) |
|
return bboxes |
|
|
|
def optimize(self): |
|
raise NotImplementedError |
|
|
|
def save_result(self, anchors, path=None): |
|
anchor_results = [] |
|
for w, h in anchors: |
|
anchor_results.append([round(w), round(h)]) |
|
self.logger.info(f'Anchor optimize result:{anchor_results}') |
|
if path: |
|
json_path = osp.join(path, 'anchor_optimize_result.json') |
|
mmcv.dump(anchor_results, json_path) |
|
self.logger.info(f'Result saved in {json_path}') |
|
|
|
|
|
class YOLOKMeansAnchorOptimizer(BaseAnchorOptimizer): |
|
r"""YOLO anchor optimizer using k-means. Code refer to `AlexeyAB/darknet. |
|
<https://github.com/AlexeyAB/darknet/blob/master/src/detector.c>`_. |
|
|
|
Args: |
|
num_anchors (int) : Number of anchors. |
|
iters (int): Maximum iterations for k-means. |
|
""" |
|
|
|
def __init__(self, num_anchors, iters, **kwargs): |
|
|
|
super(YOLOKMeansAnchorOptimizer, self).__init__(**kwargs) |
|
self.num_anchors = num_anchors |
|
self.iters = iters |
|
|
|
def optimize(self): |
|
anchors = self.kmeans_anchors() |
|
self.save_result(anchors, self.out_dir) |
|
|
|
def kmeans_anchors(self): |
|
self.logger.info( |
|
f'Start cluster {self.num_anchors} YOLO anchors with K-means...') |
|
bboxes = self.get_zero_center_bbox_tensor() |
|
cluster_center_idx = torch.randint( |
|
0, bboxes.shape[0], (self.num_anchors, )).to(self.device) |
|
|
|
assignments = torch.zeros((bboxes.shape[0], )).to(self.device) |
|
cluster_centers = bboxes[cluster_center_idx] |
|
if self.num_anchors == 1: |
|
cluster_centers = self.kmeans_maximization(bboxes, assignments, |
|
cluster_centers) |
|
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy() |
|
anchors = sorted(anchors, key=lambda x: x[0] * x[1]) |
|
return anchors |
|
|
|
prog_bar = mmcv.ProgressBar(self.iters) |
|
for i in range(self.iters): |
|
converged, assignments = self.kmeans_expectation( |
|
bboxes, assignments, cluster_centers) |
|
if converged: |
|
self.logger.info(f'K-means process has converged at iter {i}.') |
|
break |
|
cluster_centers = self.kmeans_maximization(bboxes, assignments, |
|
cluster_centers) |
|
prog_bar.update() |
|
print('\n') |
|
avg_iou = bbox_overlaps(bboxes, |
|
cluster_centers).max(1)[0].mean().item() |
|
|
|
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy() |
|
anchors = sorted(anchors, key=lambda x: x[0] * x[1]) |
|
self.logger.info(f'Anchor cluster finish. Average IOU: {avg_iou}') |
|
|
|
return anchors |
|
|
|
def kmeans_maximization(self, bboxes, assignments, centers): |
|
"""Maximization part of EM algorithm(Expectation-Maximization)""" |
|
new_centers = torch.zeros_like(centers) |
|
for i in range(centers.shape[0]): |
|
mask = (assignments == i) |
|
if mask.sum(): |
|
new_centers[i, :] = bboxes[mask].mean(0) |
|
return new_centers |
|
|
|
def kmeans_expectation(self, bboxes, assignments, centers): |
|
"""Expectation part of EM algorithm(Expectation-Maximization)""" |
|
ious = bbox_overlaps(bboxes, centers) |
|
closest = ious.argmax(1) |
|
converged = (closest == assignments).all() |
|
return converged, closest |
|
|
|
|
|
class YOLODEAnchorOptimizer(BaseAnchorOptimizer): |
|
"""YOLO anchor optimizer using differential evolution algorithm. |
|
|
|
Args: |
|
num_anchors (int) : Number of anchors. |
|
iters (int): Maximum iterations for k-means. |
|
strategy (str): The differential evolution strategy to use. |
|
Should be one of: |
|
|
|
- 'best1bin' |
|
- 'best1exp' |
|
- 'rand1exp' |
|
- 'randtobest1exp' |
|
- 'currenttobest1exp' |
|
- 'best2exp' |
|
- 'rand2exp' |
|
- 'randtobest1bin' |
|
- 'currenttobest1bin' |
|
- 'best2bin' |
|
- 'rand2bin' |
|
- 'rand1bin' |
|
|
|
Default: 'best1bin'. |
|
population_size (int): Total population size of evolution algorithm. |
|
Default: 15. |
|
convergence_thr (float): Tolerance for convergence, the |
|
optimizing stops when ``np.std(pop) <= abs(convergence_thr) |
|
+ convergence_thr * np.abs(np.mean(population_energies))``, |
|
respectively. Default: 0.0001. |
|
mutation (tuple[float]): Range of dithering randomly changes the |
|
mutation constant. Default: (0.5, 1). |
|
recombination (float): Recombination constant of crossover probability. |
|
Default: 0.7. |
|
""" |
|
|
|
def __init__(self, |
|
num_anchors, |
|
iters, |
|
strategy='best1bin', |
|
population_size=15, |
|
convergence_thr=0.0001, |
|
mutation=(0.5, 1), |
|
recombination=0.7, |
|
**kwargs): |
|
|
|
super(YOLODEAnchorOptimizer, self).__init__(**kwargs) |
|
|
|
self.num_anchors = num_anchors |
|
self.iters = iters |
|
self.strategy = strategy |
|
self.population_size = population_size |
|
self.convergence_thr = convergence_thr |
|
self.mutation = mutation |
|
self.recombination = recombination |
|
|
|
def optimize(self): |
|
anchors = self.differential_evolution() |
|
self.save_result(anchors, self.out_dir) |
|
|
|
def differential_evolution(self): |
|
bboxes = self.get_zero_center_bbox_tensor() |
|
|
|
bounds = [] |
|
for i in range(self.num_anchors): |
|
bounds.extend([(0, self.input_shape[0]), (0, self.input_shape[1])]) |
|
|
|
result = differential_evolution( |
|
func=self.avg_iou_cost, |
|
bounds=bounds, |
|
args=(bboxes, ), |
|
strategy=self.strategy, |
|
maxiter=self.iters, |
|
popsize=self.population_size, |
|
tol=self.convergence_thr, |
|
mutation=self.mutation, |
|
recombination=self.recombination, |
|
updating='immediate', |
|
disp=True) |
|
self.logger.info( |
|
f'Anchor evolution finish. Average IOU: {1 - result.fun}') |
|
anchors = [(w, h) for w, h in zip(result.x[::2], result.x[1::2])] |
|
anchors = sorted(anchors, key=lambda x: x[0] * x[1]) |
|
return anchors |
|
|
|
@staticmethod |
|
def avg_iou_cost(anchor_params, bboxes): |
|
assert len(anchor_params) % 2 == 0 |
|
anchor_whs = torch.tensor( |
|
[[w, h] |
|
for w, h in zip(anchor_params[::2], anchor_params[1::2])]).to( |
|
bboxes.device, dtype=bboxes.dtype) |
|
anchor_boxes = bbox_cxcywh_to_xyxy( |
|
torch.cat([torch.zeros_like(anchor_whs), anchor_whs], dim=1)) |
|
ious = bbox_overlaps(bboxes, anchor_boxes) |
|
max_ious, _ = ious.max(1) |
|
cost = 1 - max_ious.mean().item() |
|
return cost |
|
|
|
|
|
def main(): |
|
logger = get_root_logger() |
|
args = parse_args() |
|
cfg = args.config |
|
cfg = Config.fromfile(cfg) |
|
|
|
|
|
cfg = replace_cfg_vals(cfg) |
|
|
|
|
|
update_data_root(cfg) |
|
|
|
input_shape = args.input_shape |
|
assert len(input_shape) == 2 |
|
|
|
anchor_type = cfg.model.bbox_head.anchor_generator.type |
|
assert anchor_type == 'YOLOAnchorGenerator', \ |
|
f'Only support optimize YOLOAnchor, but get {anchor_type}.' |
|
|
|
base_sizes = cfg.model.bbox_head.anchor_generator.base_sizes |
|
num_anchors = sum([len(sizes) for sizes in base_sizes]) |
|
|
|
train_data_cfg = cfg.data.train |
|
while 'dataset' in train_data_cfg: |
|
train_data_cfg = train_data_cfg['dataset'] |
|
dataset = build_dataset(train_data_cfg) |
|
|
|
if args.algorithm == 'k-means': |
|
optimizer = YOLOKMeansAnchorOptimizer( |
|
dataset=dataset, |
|
input_shape=input_shape, |
|
device=args.device, |
|
num_anchors=num_anchors, |
|
iters=args.iters, |
|
logger=logger, |
|
out_dir=args.output_dir) |
|
elif args.algorithm == 'differential_evolution': |
|
optimizer = YOLODEAnchorOptimizer( |
|
dataset=dataset, |
|
input_shape=input_shape, |
|
device=args.device, |
|
num_anchors=num_anchors, |
|
iters=args.iters, |
|
logger=logger, |
|
out_dir=args.output_dir) |
|
else: |
|
raise NotImplementedError( |
|
f'Only support k-means and differential_evolution, ' |
|
f'but get {args.algorithm}') |
|
|
|
optimizer.optimize() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|