Edit model card

he-cantillation

This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2584
  • Wer: 17.4613
  • Avg Precision Exact: 0.8722
  • Avg Recall Exact: 0.8838
  • Avg F1 Exact: 0.8772
  • Avg Precision Letter Shift: 0.8981
  • Avg Recall Letter Shift: 0.9102
  • Avg F1 Letter Shift: 0.9033
  • Avg Precision Word Level: 0.9008
  • Avg Recall Word Level: 0.9121
  • Avg F1 Word Level: 0.9057
  • Avg Precision Word Shift: 0.9601
  • Avg Recall Word Shift: 0.9730
  • Avg F1 Word Shift: 0.9657
  • Precision Median Exact: 0.9286
  • Recall Median Exact: 0.9333
  • F1 Median Exact: 0.9565
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.6364
  • Recall Min Word Shift: 0.6364
  • F1 Min Word Shift: 0.6364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 200000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
No log 0.0001 1 10.1840 103.2210 0.0002 0.0000 0.0000 0.0022 0.0069 0.0014 0.0019 0.0169 0.0033 0.0094 0.0316 0.0107 0.0 0.0 0.0 0.0714 0.0069 0.0127 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0146 1.1457 10000 0.1688 23.0557 0.8202 0.8417 0.8300 0.8524 0.8746 0.8625 0.8584 0.8783 0.8674 0.9348 0.9545 0.9436 0.9091 0.9167 0.9091 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2308 0.375 0.2857
0.0105 2.2915 20000 0.1836 20.5764 0.8526 0.8616 0.8563 0.8800 0.8897 0.8840 0.8816 0.8917 0.8858 0.9510 0.9624 0.9559 0.9167 0.9231 0.9231 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5556 0.625 0.5882
0.0051 3.4372 30000 0.1949 19.7288 0.8570 0.8663 0.8608 0.8812 0.8912 0.8854 0.8834 0.8928 0.8872 0.9540 0.9642 0.9583 0.9231 0.9286 0.9474 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6429 0.6923 0.6667
0.0025 4.5830 40000 0.2128 19.5380 0.8631 0.8765 0.8690 0.8908 0.9051 0.8971 0.8951 0.9065 0.9000 0.9514 0.9654 0.9577 0.9231 0.9231 0.9231 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.6923 0.6667
0.003 5.7287 50000 0.2182 20.0042 0.8632 0.8761 0.8689 0.8901 0.9039 0.8962 0.8935 0.9057 0.8988 0.9539 0.9671 0.9597 0.9231 0.9231 0.9286 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6154 0.6667 0.64
0.0027 6.8744 60000 0.2184 19.0083 0.8532 0.8641 0.8579 0.8810 0.8923 0.8859 0.8840 0.8941 0.8884 0.9564 0.9677 0.9613 0.9231 0.9231 0.9231 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6667 0.6923 0.6923
0.0016 8.0202 70000 0.2156 18.9871 0.8527 0.8636 0.8574 0.8808 0.8923 0.8858 0.8825 0.8938 0.8874 0.9544 0.9653 0.9591 0.9167 0.9231 0.9231 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6667 0.6667 0.6667
0.001 9.1659 80000 0.2248 18.9659 0.8610 0.8698 0.8647 0.8903 0.9000 0.8944 0.8933 0.9020 0.8969 0.9569 0.9673 0.9614 0.9231 0.9231 0.9231 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4286 0.5 0.4615
0.001 10.3116 90000 0.2344 18.6692 0.8763 0.8880 0.8814 0.9011 0.9133 0.9063 0.9039 0.9152 0.9087 0.9558 0.9694 0.9618 0.9231 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5833 0.6923 0.6667
0.0008 11.4574 100000 0.2362 18.8811 0.8607 0.8709 0.8650 0.8878 0.8983 0.8922 0.8905 0.8994 0.8942 0.9534 0.9654 0.9586 0.9231 0.9231 0.9286 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6429 0.6923 0.6923
0.0005 12.6031 110000 0.2331 18.3513 0.8603 0.8711 0.8648 0.8878 0.8992 0.8926 0.8897 0.9010 0.8945 0.9516 0.9631 0.9566 0.9231 0.9231 0.9286 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1667 0.2 0.1818
0.0002 13.7489 120000 0.2378 18.6692 0.8691 0.8790 0.8734 0.8960 0.9066 0.9006 0.8999 0.9102 0.9043 0.9583 0.9688 0.9628 0.9231 0.9231 0.9286 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5455 0.5455 0.5455
0.0005 14.8946 130000 0.2428 18.3090 0.8702 0.8790 0.8739 0.8960 0.9053 0.8999 0.8997 0.9072 0.9027 0.9563 0.9671 0.9609 0.9231 0.9231 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6923 0.6923 0.6923
0.0001 16.0403 140000 0.2476 18.0123 0.8701 0.8823 0.8754 0.8959 0.9085 0.9014 0.8993 0.9109 0.9043 0.9584 0.9715 0.9641 0.9231 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6923 0.6923 0.6923
0.0 17.1861 150000 0.2520 18.4361 0.8639 0.8777 0.8700 0.8910 0.9054 0.8974 0.8941 0.9079 0.9002 0.9590 0.9723 0.9648 0.9231 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6923 0.7778 0.7500
0.0 18.3318 160000 0.2503 18.1394 0.8682 0.8791 0.8729 0.8945 0.9061 0.8995 0.8980 0.9083 0.9024 0.9596 0.9715 0.9648 0.9286 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6923 0.75 0.7200
0.0 19.4775 170000 0.2474 17.8004 0.8607 0.8714 0.8653 0.8866 0.8977 0.8913 0.8900 0.9006 0.8945 0.9601 0.9701 0.9643 0.9286 0.9286 0.9565 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.6364 0.6364
0.0 20.6233 180000 0.2517 17.9275 0.8658 0.8766 0.8704 0.8928 0.9040 0.8976 0.8955 0.9057 0.8998 0.9604 0.9722 0.9655 0.9231 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.6364 0.6364
0.0 21.7690 190000 0.2553 17.6520 0.8667 0.8780 0.8716 0.8924 0.9041 0.8974 0.8950 0.9060 0.8997 0.9597 0.9718 0.9649 0.9231 0.9286 0.9524 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.6364 0.6364
0.0 22.9148 200000 0.2584 17.4613 0.8722 0.8838 0.8772 0.8981 0.9102 0.9033 0.9008 0.9121 0.9057 0.9601 0.9730 0.9657 0.9286 0.9333 0.9565 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.6364 0.6364

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cantillation/Teamim-small_WeightDecay-0.05_Augmented_Old-Data_date-21-07-2024_14-34_WithNikud

Finetuned
(1885)
this model