File size: 7,218 Bytes
4127b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
4127b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
 
4127b6d
d3b88f1
4127b6d
 
 
d3b88f1
 
 
 
4127b6d
d3b88f1
4127b6d
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
 
4127b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
 
4127b6d
 
 
 
 
 
 
 
 
d3b88f1
4127b6d
 
 
 
 
 
 
 
d3b88f1
4127b6d
 
 
 
 
 
d3b88f1
4127b6d
d3b88f1
4127b6d
 
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
4127b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b88f1
 
4127b6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import tensorflow as tf
from transformers import TFXLMRobertaModel, AutoTokenizer, TFAutoModel
from datasets import load_dataset, concatenate_datasets
from datetime import datetime
import logging
from pyprojroot.here import here

class mean_pooling_layer(tf.keras.layers.Layer):
    def __init__(self):
        super(mean_pooling_layer, self).__init__()
    
    def call(self, inputs):
        token_embeddings = inputs[0]
        attention_mask = inputs[1]
        input_mask_expanded = tf.cast(
            tf.broadcast_to(tf.expand_dims(attention_mask, -1), tf.shape(token_embeddings)),
            tf.float32
        )

        embeddings = tf.math.reduce_sum(token_embeddings * input_mask_expanded, axis=1) / tf.clip_by_value(tf.math.reduce_sum(input_mask_expanded, axis=1), 1e-9, tf.float32.max)
        return embeddings

    def get_config(self):
        config = super(mean_pooling_layer, self).get_config()
        return config
        

def create_model():
    base_student_model = TFAutoModel.from_pretrained("nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large",from_pt=True)
    input_ids_en = tf.keras.layers.Input(shape=(256,),name='input_ids_en', dtype=tf.int32)
    attention_mask_en = tf.keras.layers.Input(shape=(256,), name='attention_mask_en', dtype=tf.int32)
    input_ids_id = tf.keras.layers.Input(shape=(256,),name='input_ids_id', dtype=tf.int32)
    attention_mask_id = tf.keras.layers.Input(shape=(256,), name='attention_mask_id', dtype=tf.int32)

    output_en = base_student_model.roberta(input_ids_en, attention_mask=attention_mask_en).last_hidden_state[:,0,:]
    output_id = base_student_model.roberta(input_ids_id, attention_mask=attention_mask_id).last_hidden_state[:,0,:]

    student_model = tf.keras.Model(inputs=[input_ids_en, attention_mask_en, input_ids_id, attention_mask_id], outputs=[output_en, output_id])
    student_model.load_weights("disk/model/2023-05-25_07-52-43/multiqa-Mmini-L6-H384.h5")
    return student_model

class sentence_translation_metric(tf.keras.callbacks.Callback):
    def on_epoch_end(self,epoch,logs):
        embeddings_en, embeddings_id = self.model.predict(val_dataset, verbose=1)
        # get the embeddings
        # compute the cosine similarity between the two 
        #normalize the embeddings
        embeddings_en = tf.math.l2_normalize(embeddings_en, axis=1)
        embeddings_id = tf.math.l2_normalize(embeddings_id, axis=1)
        similarity_matrix = tf.matmul(embeddings_en, embeddings_id, transpose_b=True)
        # get the mean similarity
        correct_en_id = 0
        for i in range(similarity_matrix.shape[0]):
            if tf.math.argmax(similarity_matrix[i]) == i:
                correct_en_id += 1 

        similarity_matrix_T = tf.transpose(similarity_matrix)
        correct_id_en = 0
        for i in range(similarity_matrix_T.shape[0]):
            if tf.math.argmax(similarity_matrix_T[i]) == i:
                correct_id_en += 1

        acc_en_id = correct_en_id / similarity_matrix.shape[0]
        acc_id_en = correct_id_en / similarity_matrix_T.shape[0]
        avg_acc = (acc_en_id + acc_id_en) / 2
        print(f"translation accuracy from english to indonesian = {acc_en_id}")
        print(f"translation accuracy from indonesian to english = {acc_id_en}")
        print(f"average translation accuracy = {avg_acc}")

        logs["val_acc_en_id"] = acc_en_id
        logs["val_acc_id_en"] = acc_id_en
        logs["val_avg_acc"] = avg_acc


class ConstantScheduler(tf.keras.optimizers.schedules.LearningRateSchedule):
  def __init__(self, max_lr, warmup_steps=5000):
    super().__init__()
    self.max_lr = tf.cast(max_lr, tf.float32)
    self.warmup_steps = warmup_steps

  def __call__(self, step):
    step = tf.cast(step, tf.float32)
    condition  = tf.cond(step < self.warmup_steps, lambda: step / self.warmup_steps, lambda: 1.0)
    return self.max_lr * condition 
  

          


if __name__ == "__main__":
    num_data = 0
    dataset = load_dataset("carlesoctav/en-id-parallel-sentences-embedding")

    dataset_1 = dataset["combinedtech"]

    for split in dataset:
        dataset_1 = concatenate_datasets([dataset_1, dataset[split]])
    

    batch_size = 512
    dataset = dataset_1.train_test_split(test_size=0.005, shuffle=True)
    train_dataset = dataset["train"]
    val_dataset = dataset["test"]
    print(val_dataset.shape)

    train_dataset = train_dataset.to_tf_dataset(
        columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
        label_cols="target_embedding",
        batch_size=batch_size,
    ).unbatch()

    val_dataset = val_dataset.to_tf_dataset(
        columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
        label_cols="target_embedding",
        batch_size=batch_size,
    ).unbatch()

    #check feature
    print(train_dataset.element_spec)
    print(val_dataset.element_spec)

    train_dataset = train_dataset.batch(batch_size, drop_remainder=True).cache()
    val_dataset = val_dataset.batch(batch_size, drop_remainder=True).cache()


    learning_rate = ConstantScheduler(1e-3, warmup_steps=10000)


    optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
                                        epsilon=1e-9)



    loss = tf.keras.losses.MeanSquaredError() 
    
    date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    output_path = here(f"disk/model/{date_time}/multiqa-Mmini-L6-H384.h5")

    model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
                    filepath = output_path,
                    save_weights_only = True,
                    monitor = "val_avg_acc",
                    mode = 'auto',
                    verbose = 1,
                    save_best_only = True,
                    initial_value_threshold = 0.5,
                    )

    early_stopping = tf.keras.callbacks.EarlyStopping(
                    monitor = "val_avg_acc",
                    mode = 'auto',
                    restore_best_weights=False,
                    patience = 4,
                    verbose=1,
                    start_from_epoch = 5,
    )


    # tensor_board  = tf.keras.callbacks.TensorBoard(
    #                 log_dir = "gs://dicoding-capstone/output/logs/"+date_time
    # )

    csv_logger = tf.keras.callbacks.CSVLogger(
                    filename = here(f"disk/performance_logs/log-{date_time}.csv"),
                    separator = ",", 
                    append = False
    )

    


    callbacks = [sentence_translation_metric(), model_checkpoint, csv_logger,early_stopping]


    cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver("local")
    tf.config.experimental_connect_to_cluster(cluster_resolver)
    tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
    strategy = tf.distribute.TPUStrategy(cluster_resolver)

    with strategy.scope():
        student_model = create_model()
        student_model.compile(optimizer=optimizer, loss=loss) 

    student_model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=callbacks)


    last_epoch_save = here(f"disk/model/last_epoch/{date_time}.h5")
    student_model.save_weights(last_epoch_save)