carlosmirandad
commited on
Commit
•
90ac9fa
1
Parent(s):
8319b29
Unit 1 Model Upload
Browse files- README.md +4 -4
- config.json +1 -1
- hf_rl_unit1_cmd_lunarlander.zip +2 -2
- hf_rl_unit1_cmd_lunarlander/data +20 -20
- hf_rl_unit1_cmd_lunarlander/policy.optimizer.pth +1 -1
- hf_rl_unit1_cmd_lunarlander/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: ppo
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 280.22 +/- 26.49
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff48c13ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff48c13f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff48c17040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff48c170d0>", "_build": "<function ActorCriticPolicy._build at 0x7eff48c17160>", "forward": "<function ActorCriticPolicy.forward at 0x7eff48c171f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff48c17280>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff48c17310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff48c173a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff48c17430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff48c174c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff48c11660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672094016198508970, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLwj1vaME+mCTFuhW0dr6tp1Q9NOKsvAAAAAAAAAAAZgfNveGeiLp62Ik7cSOLODGtJTs1HRe5AACAPwAAgD/ALqG9KUgyuuVHhjerT8QwKyMRusobm7YAAIA/AACAPwACYz6Mhjg+ijgjvmnMDL5YXre8is10vQAAAAAAAAAAzU/HvXsWjbp+gcU4s2GTMwUquzhTL+O3AACAPwAAAABARYA9UJepPzsGTD5SKce+uDvQPXYAij0AAAAAAAAAAAAAKLkdnQk/QUy8vYYTZL6MwUq9A6YsvQAAAAAAAAAAM32QvAW5hLtwZZU8dAt3POAgwTyeEVW9AACAPwAAgD/242O+XzelPMI6CTtE7Xm5JOUuvpeWNroAAIA/AACAP4AXKL1IJ5a6llGMuaA8irQrmMY6a0iiOAAAgD8AAIA/AILbPI8WUboS+W+6LeVANsdS6jlDEYo5AACAPwAAgD+aU5e8j0Z1utR5LDjqpRK2YIWaOvQBRrcAAIA/AACAP0Ctnj2pY7c/JWamPqPyh77kfuU9lR2EPQAAAAAAAAAAZqYZvcMpG7rf24Y6tpWtNkZGgDpqap25AACAPwAAgD8AuA67KdAEugJ//LvD31U1wAnjum79wrQAAIA/AACAP10chj6WkRY/nizyvUdUaL4qm/C6gsGzPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoDaq04GQZUCUhpRSlIwBbJRN6AOMAXSUR0ChonUOEug6dX2UKGgGaAloD0MI3uS36GQhZECUhpRSlGgVTegDaBZHQKGjMjdHlOp1fZQoaAZoCWgPQwjTS4xlei5jQJSGlFKUaBVN6ANoFkdAoaNIQUYbbXV9lChoBmgJaA9DCObOTDAc+WRAlIaUUpRoFU3oA2gWR0ChqHVi4J/odX2UKGgGaAloD0MIcJo+O+ACY0CUhpRSlGgVTegDaBZHQKGo73s5XEJ1fZQoaAZoCWgPQwiaRL3gU39gQJSGlFKUaBVN6ANoFkdAoavJ73PAwnV9lChoBmgJaA9DCJp63SKw4GFAlIaUUpRoFU3oA2gWR0Chq/Z9NN8FdX2UKGgGaAloD0MIbvyJyoZxYUCUhpRSlGgVTegDaBZHQKGxNHp8neB1fZQoaAZoCWgPQwjw4CcOoHBfQJSGlFKUaBVN6ANoFkdAobN+lfqoqHV9lChoBmgJaA9DCPiKbr0mTmNAlIaUUpRoFU3oA2gWR0Chs/jLbHp9dX2UKGgGaAloD0MIyQImcGveY0CUhpRSlGgVTegDaBZHQKG0jRdhRZV1fZQoaAZoCWgPQwiv0XKgh2RkQJSGlFKUaBVN6ANoFkdAobn4fjjrA3V9lChoBmgJaA9DCBu+hXVjKGRAlIaUUpRoFU3oA2gWR0ChvSCLuQZGdX2UKGgGaAloD0MIW0QUkzfwJ0CUhpRSlGgVTSUBaBZHQKG9XS3solV1fZQoaAZoCWgPQwgyAFRxY2BiQJSGlFKUaBVN6ANoFkdAob1tcbBGhHV9lChoBmgJaA9DCKEQAYdQLF9AlIaUUpRoFU3oA2gWR0Chvk0NKAavdX2UKGgGaAloD0MI/U6TGe/AYkCUhpRSlGgVTegDaBZHQKG+8SlnAZd1fZQoaAZoCWgPQwgDlfHvM3RmQJSGlFKUaBVN6ANoFkdAocwK1PWQOnV9lChoBmgJaA9DCKAy/n1GHmJAlIaUUpRoFU3oA2gWR0ChzRVmJ3xGdX2UKGgGaAloD0MIizbHuU1hXUCUhpRSlGgVTegDaBZHQKHNNF3IMjN1fZQoaAZoCWgPQwjBAMKHEvpcQJSGlFKUaBVN6ANoFkdAodK1zS1E3XV9lChoBmgJaA9DCPOspBXfdltAlIaUUpRoFU3oA2gWR0Ch0zfkWAPNdX2UKGgGaAloD0MItYtppnsPYkCUhpRSlGgVTegDaBZHQKHWGi1y/9J1fZQoaAZoCWgPQwhortNIS6hhQJSGlFKUaBVN6ANoFkdAodZJsl9jPXV9lChoBmgJaA9DCGO2ZFUEGGRAlIaUUpRoFU3oA2gWR0Ch3ArqUu+RdX2UKGgGaAloD0MIfGDHf4HsZECUhpRSlGgVTegDaBZHQKHecW0qpcZ1fZQoaAZoCWgPQwilEMglDq9hQJSGlFKUaBVN6ANoFkdAod+MiOearnV9lChoBmgJaA9DCGvwviqXBWNAlIaUUpRoFU3oA2gWR0Ch5aOQIUrTdX2UKGgGaAloD0MIRdWvdD4nWkCUhpRSlGgVTegDaBZHQKHpIZtvXK91fZQoaAZoCWgPQwgLKT+pdldhQJSGlFKUaBVN6ANoFkdAoelirzXjEXV9lChoBmgJaA9DCEYMO4xJPGBAlIaUUpRoFU3oA2gWR0Ch6XRMewLWdX2UKGgGaAloD0MI2INJ8fG6ZUCUhpRSlGgVTegDaBZHQKHqVhzeXRh1fZQoaAZoCWgPQwg4a/C+qu1gQJSGlFKUaBVN6ANoFkdAoer+RLbpNnV9lChoBmgJaA9DCG9kHvkD0WZAlIaUUpRoFU3oA2gWR0Ch9nq+ajN7dX2UKGgGaAloD0MIt7WF56XjYkCUhpRSlGgVTegDaBZHQKH3PnIQvpR1fZQoaAZoCWgPQwiL3qmA+5RnQJSGlFKUaBVN6ANoFkdAofdUn7YTTXV9lChoBmgJaA9DCJT43Al2RmBAlIaUUpRoFU3oA2gWR0Ch/K1mz0HydX2UKGgGaAloD0MIPGagMv5UXkCUhpRSlGgVTegDaBZHQKH9Nkc0cfh1fZQoaAZoCWgPQwiutmJ/2TtbQJSGlFKUaBVN6ANoFkdAogBXbXYlIHV9lChoBmgJaA9DCHmRCfg1yVxAlIaUUpRoFU3oA2gWR0CiAImlyimEdX2UKGgGaAloD0MIxQJf0S0KY0CUhpRSlGgVTegDaBZHQKIGOvYe1a51fZQoaAZoCWgPQwheZW1TPFtdQJSGlFKUaBVN6ANoFkdAogiWkN4JNXV9lChoBmgJaA9DCCQO2UC6iGFAlIaUUpRoFU3oA2gWR0CiCbMzdk8SdX2UKGgGaAloD0MIGysxz0qiXkCUhpRSlGgVTegDaBZHQKIPuP4mCy11fZQoaAZoCWgPQwjfqBWm7wpjQJSGlFKUaBVN6ANoFkdAohMLvJA+p3V9lChoBmgJaA9DCOxrXWoE/GFAlIaUUpRoFU3oA2gWR0CiE0olMRHxdX2UKGgGaAloD0MIc6JdhZSzXECUhpRSlGgVTegDaBZHQKITWzcAR051fZQoaAZoCWgPQwiQos7cQwtkQJSGlFKUaBVN6ANoFkdAohQ8tTUAk3V9lChoBmgJaA9DCPC/lezYL15AlIaUUpRoFU3oA2gWR0CiFOewcHW0dX2UKGgGaAloD0MI12t6UFCyXUCUhpRSlGgVTegDaBZHQKIirxBmf5F1fZQoaAZoCWgPQwhwCFVqdgRiQJSGlFKUaBVN6ANoFkdAoiNgiaAnUnV9lChoBmgJaA9DCAiUTblC7GFAlIaUUpRoFU3oA2gWR0CiI3XdKujidX2UKGgGaAloD0MIyvyjb1I5Z0CUhpRSlGgVTegDaBZHQKIohpKSPlx1fZQoaAZoCWgPQwjP2m0XmkhhQJSGlFKUaBVN6ANoFkdAoikIxagVXXV9lChoBmgJaA9DCAqCx7d3lU9AlIaUUpRoFU0JAWgWR0CiKjGd7OVxdX2UKGgGaAloD0MIhlW8kflkZkCUhpRSlGgVTegDaBZHQKIr5/tpmEp1fZQoaAZoCWgPQwhD5zV2iYhgQJSGlFKUaBVN6ANoFkdAoiwWVu76HnV9lChoBmgJaA9DCFRuopZm6mFAlIaUUpRoFU3oA2gWR0CiMebtRekYdX2UKGgGaAloD0MIxEFClK/CYECUhpRSlGgVTegDaBZHQKI0VXzUZvV1fZQoaAZoCWgPQwjopPeNLyBhQJSGlFKUaBVN6ANoFkdAojVyuhbno3V9lChoBmgJaA9DCF+2nbbG5mNAlIaUUpRoFU3oA2gWR0CiO2K4hEBsdX2UKGgGaAloD0MIUmUYdwNkY0CUhpRSlGgVTegDaBZHQKI+smaYu011fZQoaAZoCWgPQwgYsyWrIkNkQJSGlFKUaBVN6ANoFkdAoj7wTM7lrHV9lChoBmgJaA9DCESkpl1Mq2RAlIaUUpRoFU3oA2gWR0CiPwEiMYMwdX2UKGgGaAloD0MIPpepSXAxZkCUhpRSlGgVTegDaBZHQKI/2cbR4Ql1fZQoaAZoCWgPQwjaci7FVSRkQJSGlFKUaBVN6ANoFkdAokB5yuIRAnV9lChoBmgJaA9DCAzNdRppAWJAlIaUUpRoFU3oA2gWR0CiTH1r6+FldX2UKGgGaAloD0MI2qoksg9pXECUhpRSlGgVTegDaBZHQKJMkrbxmTV1fZQoaAZoCWgPQwgS91j6UOxhQJSGlFKUaBVN6ANoFkdAolHhJmNBGHV9lChoBmgJaA9DCCqRRC+jwmRAlIaUUpRoFU3oA2gWR0CiUmAFotcwdX2UKGgGaAloD0MIBcJOsWp2YkCUhpRSlGgVTegDaBZHQKJTiIRh+fB1fZQoaAZoCWgPQwiJ6xhXXNJkQJSGlFKUaBVN6ANoFkdAolU2GVRk3HV9lChoBmgJaA9DCI16iEZ312FAlIaUUpRoFU3oA2gWR0CiVWb2Dg62dX2UKGgGaAloD0MILzVCP1NIYUCUhpRSlGgVTegDaBZHQKJbGVqveP91fZQoaAZoCWgPQwiqRq8GKK1aQJSGlFKUaBVN6ANoFkdAol1+rU9ZBHV9lChoBmgJaA9DCJz7q8d9SF1AlIaUUpRoFU3oA2gWR0CiXpi3w1BMdX2UKGgGaAloD0MI66f/rPlcZUCUhpRSlGgVTegDaBZHQKJkYYWtU4t1fZQoaAZoCWgPQwipTZzc719jQJSGlFKUaBVN6ANoFkdAomeN5le4TnV9lChoBmgJaA9DCAiSdw7l3GJAlIaUUpRoFU3oA2gWR0CiZ8hfKISEdX2UKGgGaAloD0MIKIHNOXhRYkCUhpRSlGgVTegDaBZHQKJn2K9f1Hx1fZQoaAZoCWgPQwg/j1Ge+XdlQJSGlFKUaBVN6ANoFkdAomikcn3L3nV9lChoBmgJaA9DCFopBHKJR2FAlIaUUpRoFU3oA2gWR0CiaUXtrsSkdX2UKGgGaAloD0MIZw+0AkNFY0CUhpRSlGgVTegDaBZHQKJryebutwJ1fZQoaAZoCWgPQwhXXByVm7laQJSGlFKUaBVN6ANoFkdAonU+VJL/THV9lChoBmgJaA9DCP7RN2kaFCFAlIaUUpRoFUvTaBZHQKJ3ohY/3WZ1fZQoaAZoCWgPQwhE393KEuphQJSGlFKUaBVN6ANoFkdAonozCzkZJnV9lChoBmgJaA9DCFgBvtu85WVAlIaUUpRoFU3oA2gWR0Cieq0aQ3gldX2UKGgGaAloD0MI5/7qcd+lYkCUhpRSlGgVTegDaBZHQKJ7xu76Hj91fZQoaAZoCWgPQwhhqpm1FFliQJSGlFKUaBVN6ANoFkdAon1Fw1ivxHV9lChoBmgJaA9DCGEzwAXZvF9AlIaUUpRoFU3oA2gWR0CifXLns9jgdX2UKGgGaAloD0MIpPs5Bfm0YUCUhpRSlGgVTegDaBZHQKKCZlYEGJN1fZQoaAZoCWgPQwg6sYf2sQVjQJSGlFKUaBVN6ANoFkdAooRtxjriVHV9lChoBmgJaA9DCE+TGW+rP2BAlIaUUpRoFU3oA2gWR0CihWIEKVpsdX2UKGgGaAloD0MI84++SdMAZECUhpRSlGgVTegDaBZHQKKKu23rleZ1fZQoaAZoCWgPQwhsCfmgZzVfQJSGlFKUaBVN6ANoFkdAoo3Mgntv43V9lChoBmgJaA9DCGfSpuoeGF5AlIaUUpRoFU3oA2gWR0Cijgqo60Y1dX2UKGgGaAloD0MIvEG0VjRvZ0CUhpRSlGgVTegDaBZHQKKOGriEQGx1fZQoaAZoCWgPQwi693DJcftlQJSGlFKUaBVN6ANoFkdAoo+NQO4G2XV9lChoBmgJaA9DCH9LAP6phmFAlIaUUpRoFU3oA2gWR0CikjE8RtgsdX2UKGgGaAloD0MIySB3ESa0ZUCUhpRSlGgVTegDaBZHQKKSRUqhDgJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f310239c040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f310239c0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f310239c160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f310239c1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f310239c280>", "forward": "<function ActorCriticPolicy.forward at 0x7f310239c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f310239c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f310239c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f310239c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f310239c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f310239c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3102410c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672103929710167767, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAqsLw4tdS74Jh8uwi7gjzw0Sg93YNdvQAAgD8AAIA/Zp4AvX4l8D7o39G9JXrBvh7rLb4+AhW9AAAAAAAAAABtwzm+VhayPuw4yD1BsMy+NKgovmB4Yz0AAAAAAAAAAI2Lzz1a3aI/Pd/cPsLC0r5O+0Q+kk+iPgAAAAAAAAAAQM30vbhfrz/aupK+MXD3vkijpL1KGy6+AAAAAAAAAABmuoW7j90YPsNn2bx9wpq+3sMDvoi28DwAAAAAAAAAAE2XGT7b9BA/4Oagvovrmb6FkQA9phoVvgAAAAAAAAAAgBflPXpQGz+tOhO+81mpvuv9rLyZ9jK9AAAAAAAAAADNnE+7R/qyP8lLpL5KAxC/JgRxO73clD0AAAAAAAAAAM3HiLxQuOQ+Jg+sPcMs1L70bgI9wm1OPQAAAAAAAAAAmryePB80h7vYjQ67ADwoPcjUiLyeAU45AACAPwAAgD9mbso8XAMkun0ZfbNiMXKsQv4Mup/0vDMAAIA/AACAP81UezuV/LY/xk4ZPbepLTx60Ho8YY6UPQAAAAAAAAAAzYfnvJc/UT5QyA89u3msvjIwbb2fVJU9AAAAAAAAAAAzGIM9Nia5P+N2Bz8QPTI8dVAJPRkehT4AAAAAAAAAAHPYsr3hGJC6esKRON+1PjRAwIQ6T7+wtwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHERrRZvgZ0CUhpRSlIwBbJRN4gKMAXSUR0CkMqVmjCYUdX2UKGgGaAloD0MIOKPmqyQ1cECUhpRSlGgVS/doFkdApDKl5+pfhXV9lChoBmgJaA9DCEDDmzU4M3NAlIaUUpRoFU0EAWgWR0CkMqjJuEVWdX2UKGgGaAloD0MI0eejjHh8cECUhpRSlGgVTQcBaBZHQKQyt238XN11fZQoaAZoCWgPQwgOFHgnX7xxQJSGlFKUaBVL9mgWR0CkMraUaAFxdX2UKGgGaAloD0MIsmSO5R0BckCUhpRSlGgVTQ8BaBZHQKQzdVxS5y51fZQoaAZoCWgPQwgJ3pBGxctyQJSGlFKUaBVLzmgWR0CkM5zollbvdX2UKGgGaAloD0MI9IjRcwtpc0CUhpRSlGgVS9loFkdApDOvV/c32nV9lChoBmgJaA9DCL+1EyWhOHBAlIaUUpRoFUvmaBZHQKQzsZ5Rjz91fZQoaAZoCWgPQwjQ8GYN3qBvQJSGlFKUaBVL72gWR0CkM/3iaRZEdX2UKGgGaAloD0MI2CssuB8ZcUCUhpRSlGgVS9poFkdApDQsaIeo1nV9lChoBmgJaA9DCKKW5lYI5W5AlIaUUpRoFUvjaBZHQKQ0l0r9VFR1fZQoaAZoCWgPQwjZzCGpxUpyQJSGlFKUaBVNBwFoFkdApDSoyO7xu3V9lChoBmgJaA9DCKwcWmQ7QUdAlIaUUpRoFUuuaBZHQKQ0wWKuSwJ1fZQoaAZoCWgPQwhJ9gg1A5ZxQJSGlFKUaBVLyWgWR0CkNRFhXr+pdX2UKGgGaAloD0MIkzfAzDeFcECUhpRSlGgVS91oFkdApDU/VNHpbHV9lChoBmgJaA9DCP7xXrUyeXFAlIaUUpRoFUvcaBZHQKQ1PwnYxtZ1fZQoaAZoCWgPQwgeqb7zS1VzQJSGlFKUaBVL3mgWR0CkNUWcBltkdX2UKGgGaAloD0MIbarukc0fbkCUhpRSlGgVS+poFkdApDVL1mJ3xHV9lChoBmgJaA9DCMXkDTCznnBAlIaUUpRoFUvmaBZHQKQ1X0dRzil1fZQoaAZoCWgPQwjZlCu8yylyQJSGlFKUaBVL4GgWR0CkNhdqDbrUdX2UKGgGaAloD0MI409UNiwucECUhpRSlGgVS9xoFkdApDYxaaCtinV9lChoBmgJaA9DCAvQtpp1iFJAlIaUUpRoFU3oA2gWR0CkNloLXtjTdX2UKGgGaAloD0MIoDL+fYbycECUhpRSlGgVS/BoFkdApDZ85yU9p3V9lChoBmgJaA9DCLX7VYCvj3FAlIaUUpRoFUv6aBZHQKQ2lO9FnZl1fZQoaAZoCWgPQwhTzhd7rzdzQJSGlFKUaBVL6WgWR0CkNrFCCz1LdX2UKGgGaAloD0MIDycwnRaYckCUhpRSlGgVS/toFkdApDcGhEjPfXV9lChoBmgJaA9DCDKR0mweaHFAlIaUUpRoFUveaBZHQKQ3PUWEbo91fZQoaAZoCWgPQwgtXFZh81FxQJSGlFKUaBVL72gWR0CkN0glv60qdX2UKGgGaAloD0MIV87eGS1BcECUhpRSlGgVS/ZoFkdApDdrmOlwcnV9lChoBmgJaA9DCL9EvHV+YnBAlIaUUpRoFUvUaBZHQKQ3rizcAR11fZQoaAZoCWgPQwix3qgVJutwQJSGlFKUaBVL4GgWR0CkN7KoqCpWdX2UKGgGaAloD0MIlrGhm73TcUCUhpRSlGgVS+NoFkdApDfEmBvrGHV9lChoBmgJaA9DCD+Ne/Mb53BAlIaUUpRoFUv6aBZHQKQ30kTpPh11fZQoaAZoCWgPQwjmyTUFsoluQJSGlFKUaBVL82gWR0CkN+aRISUUdX2UKGgGaAloD0MIiNUfYVhacUCUhpRSlGgVS/5oFkdApDf7UG3WnXV9lChoBmgJaA9DCAJiEi7kaXNAlIaUUpRoFUvpaBZHQKRB/47ihnJ1fZQoaAZoCWgPQwjicrwCESJwQJSGlFKUaBVL3mgWR0CkQgibMHKPdX2UKGgGaAloD0MIVrYPectlcUCUhpRSlGgVS/5oFkdApEIoevIOpnV9lChoBmgJaA9DCPrPmh9/Gm1AlIaUUpRoFUvZaBZHQKRCXPszEaV1fZQoaAZoCWgPQwiE1y5tuLtxQJSGlFKUaBVL5GgWR0CkQl/apPykdX2UKGgGaAloD0MIOL2L96NvcUCUhpRSlGgVS/VoFkdApEJ2NcW0q3V9lChoBmgJaA9DCIUKDi9IOHNAlIaUUpRoFUvZaBZHQKRC8Cq6vq11fZQoaAZoCWgPQwhZ+WUwBndyQJSGlFKUaBVL3WgWR0CkQwZuAI6bdX2UKGgGaAloD0MI/PuMC4eRcUCUhpRSlGgVS/1oFkdApEMjleWv83V9lChoBmgJaA9DCJsff2mRj3NAlIaUUpRoFUvTaBZHQKRDWw4bS7Z1fZQoaAZoCWgPQwh4mzdOigpxQJSGlFKUaBVL/WgWR0CkQ4mb9ZRsdX2UKGgGaAloD0MI1PNuLKjFcECUhpRSlGgVS9toFkdApEOIY1pCbHV9lChoBmgJaA9DCBgkfVqFzXBAlIaUUpRoFUvzaBZHQKRD0lFc6eZ1fZQoaAZoCWgPQwjFVWXflfZxQJSGlFKUaBVNAwFoFkdApEPYiX6ZY3V9lChoBmgJaA9DCFtAaD28BXJAlIaUUpRoFUv9aBZHQKREAcpb2UV1fZQoaAZoCWgPQwjUKCSZFTVzQJSGlFKUaBVNGgFoFkdApERophF3IXV9lChoBmgJaA9DCOfkRSZgwG1AlIaUUpRoFUvyaBZHQKREp9LpRoB1fZQoaAZoCWgPQwikUBa+fv9wQJSGlFKUaBVL1mgWR0CkRK3Dej20dX2UKGgGaAloD0MIzXfwEwepcUCUhpRSlGgVS/toFkdApETGMS9M9XV9lChoBmgJaA9DCMxB0NFqFnJAlIaUUpRoFU0FAWgWR0CkRP+4Cp3pdX2UKGgGaAloD0MI1IBB0mcHckCUhpRSlGgVS/toFkdApEUWqJdjXnV9lChoBmgJaA9DCGFwzR39m3JAlIaUUpRoFU0HAWgWR0CkRU2K2rn1dX2UKGgGaAloD0MIRgvQthrob0CUhpRSlGgVS+VoFkdApEVpSiudPXV9lChoBmgJaA9DCK5lMhxP/m9AlIaUUpRoFUvvaBZHQKRFl/J/5L11fZQoaAZoCWgPQwgw2A3blqlvQJSGlFKUaBVL22gWR0CkRdj50r9VdX2UKGgGaAloD0MI3VuRmOCEc0CUhpRSlGgVS+loFkdApEX/b9If83V9lChoBmgJaA9DCLAD54yoNHJAlIaUUpRoFUvTaBZHQKRGE5/b0vp1fZQoaAZoCWgPQwg+6xotBwZxQJSGlFKUaBVL/2gWR0CkRhPl+3H8dX2UKGgGaAloD0MIlpf8T76wckCUhpRSlGgVTTIBaBZHQKRGZri2lVN1fZQoaAZoCWgPQwgW+fVDLG5yQJSGlFKUaBVL9WgWR0CkRnJrcj7idX2UKGgGaAloD0MI499nXPiWcUCUhpRSlGgVS/loFkdApEamVqveQHV9lChoBmgJaA9DCM3psphYFXNAlIaUUpRoFUvyaBZHQKRG+/QBxPx1fZQoaAZoCWgPQwhLdQEvM1tzQJSGlFKUaBVL3mgWR0CkRwhjFyaNdX2UKGgGaAloD0MI7N0f79UEdECUhpRSlGgVS9toFkdApEcY4sEq2HV9lChoBmgJaA9DCA2OklfnGW9AlIaUUpRoFUvsaBZHQKRHKF+uvEF1fZQoaAZoCWgPQwhiEi7kUR9xQJSGlFKUaBVL3WgWR0CkR1JSR8txdX2UKGgGaAloD0MIRX9o5gkTcUCUhpRSlGgVS/JoFkdApEeg5Jbt7nV9lChoBmgJaA9DCP66050nh3JAlIaUUpRoFUvTaBZHQKRHzlf7aZh1fZQoaAZoCWgPQwiPG343naVyQJSGlFKUaBVNFwFoFkdApEhC4Wk8BHV9lChoBmgJaA9DCGNi83FtuG9AlIaUUpRoFUvcaBZHQKRIVf5ULlV1fZQoaAZoCWgPQwg6dlCJ6xNyQJSGlFKUaBVL9WgWR0CkSHesxO+JdX2UKGgGaAloD0MIavgW1o3ibkCUhpRSlGgVS+NoFkdApEh/jCHh0nV9lChoBmgJaA9DCGWO5V11DG5AlIaUUpRoFUvyaBZHQKRIqAH3UQV1fZQoaAZoCWgPQwhywRn8vfNwQJSGlFKUaBVL7WgWR0CkSPbB42S/dX2UKGgGaAloD0MIHQHcLJ6kcECUhpRSlGgVS/doFkdApElewu/UOXV9lChoBmgJaA9DCEKUL2ihmnFAlIaUUpRoFUvQaBZHQKRJeafjCHh1fZQoaAZoCWgPQwjHEtbGWHluQJSGlFKUaBVL8mgWR0CkSbAI6bONdX2UKGgGaAloD0MIG2g+5+5HcECUhpRSlGgVS/ZoFkdApEnJqynk1nV9lChoBmgJaA9DCHCUvDpHAXNAlIaUUpRoFU2nAWgWR0CkSgnAAQxvdX2UKGgGaAloD0MI/tZOlAQ3c0CUhpRSlGgVTQoBaBZHQKRKFXhfjS51fZQoaAZoCWgPQwjVQPM5N65zQJSGlFKUaBVL3GgWR0CkSiTZ6D5CdX2UKGgGaAloD0MIhnKiXQUucUCUhpRSlGgVTQ4BaBZHQKRKXUaya/h1fZQoaAZoCWgPQwjnHafoCGFxQJSGlFKUaBVNAQFoFkdApEq5bbDdg3V9lChoBmgJaA9DCB6ILNJEWnBAlIaUUpRoFUvbaBZHQKRKwUzKs+51fZQoaAZoCWgPQwh/aVGf5DpxQJSGlFKUaBVL9mgWR0CkS0oyj59FdX2UKGgGaAloD0MInFHzVTKNcECUhpRSlGgVS/RoFkdApEtNEVnEl3V9lChoBmgJaA9DCFOynISSeHBAlIaUUpRoFU0LAWgWR0CkS2jm8ujAdX2UKGgGaAloD0MICf63kl11cUCUhpRSlGgVS/JoFkdApEt2sNlRQHV9lChoBmgJaA9DCKa5FcIqWXBAlIaUUpRoFUvcaBZHQKRLhHkLhJl1fZQoaAZoCWgPQwjdlsgFJ1lyQJSGlFKUaBVL72gWR0CkTDuSW7e3dX2UKGgGaAloD0MIrrmj/2XZcUCUhpRSlGgVS+loFkdApEx6IDYAbXV9lChoBmgJaA9DCDI9YYkHd3NAlIaUUpRoFUvXaBZHQKRMlE1EVnF1fZQoaAZoCWgPQwjeV+VC5ZJxQJSGlFKUaBVL/WgWR0CkTJ6XKKYRdX2UKGgGaAloD0MIo61KIrvDc0CUhpRSlGgVS9xoFkdApEy0A93bEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
hf_rl_unit1_cmd_lunarlander.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0644fd51157ee54e51936b74ae99d034fce760c7bcffc6f0509e6fc10ab61706
|
3 |
+
size 147110
|
hf_rl_unit1_cmd_lunarlander/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,26 +56,26 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f310239c040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f310239c0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f310239c160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f310239c1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f310239c280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f310239c310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f310239c3a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f310239c430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f310239c4c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f310239c550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f310239c5e0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3102410c90>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1672103929710167767,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAqsLw4tdS74Jh8uwi7gjzw0Sg93YNdvQAAgD8AAIA/Zp4AvX4l8D7o39G9JXrBvh7rLb4+AhW9AAAAAAAAAABtwzm+VhayPuw4yD1BsMy+NKgovmB4Yz0AAAAAAAAAAI2Lzz1a3aI/Pd/cPsLC0r5O+0Q+kk+iPgAAAAAAAAAAQM30vbhfrz/aupK+MXD3vkijpL1KGy6+AAAAAAAAAABmuoW7j90YPsNn2bx9wpq+3sMDvoi28DwAAAAAAAAAAE2XGT7b9BA/4Oagvovrmb6FkQA9phoVvgAAAAAAAAAAgBflPXpQGz+tOhO+81mpvuv9rLyZ9jK9AAAAAAAAAADNnE+7R/qyP8lLpL5KAxC/JgRxO73clD0AAAAAAAAAAM3HiLxQuOQ+Jg+sPcMs1L70bgI9wm1OPQAAAAAAAAAAmryePB80h7vYjQ67ADwoPcjUiLyeAU45AACAPwAAgD9mbso8XAMkun0ZfbNiMXKsQv4Mup/0vDMAAIA/AACAP81UezuV/LY/xk4ZPbepLTx60Ho8YY6UPQAAAAAAAAAAzYfnvJc/UT5QyA89u3msvjIwbb2fVJU9AAAAAAAAAAAzGIM9Nia5P+N2Bz8QPTI8dVAJPRkehT4AAAAAAAAAAHPYsr3hGJC6esKRON+1PjRAwIQ6T7+wtwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHERrRZvgZ0CUhpRSlIwBbJRN4gKMAXSUR0CkMqVmjCYUdX2UKGgGaAloD0MIOKPmqyQ1cECUhpRSlGgVS/doFkdApDKl5+pfhXV9lChoBmgJaA9DCEDDmzU4M3NAlIaUUpRoFU0EAWgWR0CkMqjJuEVWdX2UKGgGaAloD0MI0eejjHh8cECUhpRSlGgVTQcBaBZHQKQyt238XN11fZQoaAZoCWgPQwgOFHgnX7xxQJSGlFKUaBVL9mgWR0CkMraUaAFxdX2UKGgGaAloD0MIsmSO5R0BckCUhpRSlGgVTQ8BaBZHQKQzdVxS5y51fZQoaAZoCWgPQwgJ3pBGxctyQJSGlFKUaBVLzmgWR0CkM5zollbvdX2UKGgGaAloD0MI9IjRcwtpc0CUhpRSlGgVS9loFkdApDOvV/c32nV9lChoBmgJaA9DCL+1EyWhOHBAlIaUUpRoFUvmaBZHQKQzsZ5Rjz91fZQoaAZoCWgPQwjQ8GYN3qBvQJSGlFKUaBVL72gWR0CkM/3iaRZEdX2UKGgGaAloD0MI2CssuB8ZcUCUhpRSlGgVS9poFkdApDQsaIeo1nV9lChoBmgJaA9DCKKW5lYI5W5AlIaUUpRoFUvjaBZHQKQ0l0r9VFR1fZQoaAZoCWgPQwjZzCGpxUpyQJSGlFKUaBVNBwFoFkdApDSoyO7xu3V9lChoBmgJaA9DCKwcWmQ7QUdAlIaUUpRoFUuuaBZHQKQ0wWKuSwJ1fZQoaAZoCWgPQwhJ9gg1A5ZxQJSGlFKUaBVLyWgWR0CkNRFhXr+pdX2UKGgGaAloD0MIkzfAzDeFcECUhpRSlGgVS91oFkdApDU/VNHpbHV9lChoBmgJaA9DCP7xXrUyeXFAlIaUUpRoFUvcaBZHQKQ1PwnYxtZ1fZQoaAZoCWgPQwgeqb7zS1VzQJSGlFKUaBVL3mgWR0CkNUWcBltkdX2UKGgGaAloD0MIbarukc0fbkCUhpRSlGgVS+poFkdApDVL1mJ3xHV9lChoBmgJaA9DCMXkDTCznnBAlIaUUpRoFUvmaBZHQKQ1X0dRzil1fZQoaAZoCWgPQwjZlCu8yylyQJSGlFKUaBVL4GgWR0CkNhdqDbrUdX2UKGgGaAloD0MI409UNiwucECUhpRSlGgVS9xoFkdApDYxaaCtinV9lChoBmgJaA9DCAvQtpp1iFJAlIaUUpRoFU3oA2gWR0CkNloLXtjTdX2UKGgGaAloD0MIoDL+fYbycECUhpRSlGgVS/BoFkdApDZ85yU9p3V9lChoBmgJaA9DCLX7VYCvj3FAlIaUUpRoFUv6aBZHQKQ2lO9FnZl1fZQoaAZoCWgPQwhTzhd7rzdzQJSGlFKUaBVL6WgWR0CkNrFCCz1LdX2UKGgGaAloD0MIDycwnRaYckCUhpRSlGgVS/toFkdApDcGhEjPfXV9lChoBmgJaA9DCDKR0mweaHFAlIaUUpRoFUveaBZHQKQ3PUWEbo91fZQoaAZoCWgPQwgtXFZh81FxQJSGlFKUaBVL72gWR0CkN0glv60qdX2UKGgGaAloD0MIV87eGS1BcECUhpRSlGgVS/ZoFkdApDdrmOlwcnV9lChoBmgJaA9DCL9EvHV+YnBAlIaUUpRoFUvUaBZHQKQ3rizcAR11fZQoaAZoCWgPQwix3qgVJutwQJSGlFKUaBVL4GgWR0CkN7KoqCpWdX2UKGgGaAloD0MIlrGhm73TcUCUhpRSlGgVS+NoFkdApDfEmBvrGHV9lChoBmgJaA9DCD+Ne/Mb53BAlIaUUpRoFUv6aBZHQKQ30kTpPh11fZQoaAZoCWgPQwjmyTUFsoluQJSGlFKUaBVL82gWR0CkN+aRISUUdX2UKGgGaAloD0MIiNUfYVhacUCUhpRSlGgVS/5oFkdApDf7UG3WnXV9lChoBmgJaA9DCAJiEi7kaXNAlIaUUpRoFUvpaBZHQKRB/47ihnJ1fZQoaAZoCWgPQwjicrwCESJwQJSGlFKUaBVL3mgWR0CkQgibMHKPdX2UKGgGaAloD0MIVrYPectlcUCUhpRSlGgVS/5oFkdApEIoevIOpnV9lChoBmgJaA9DCPrPmh9/Gm1AlIaUUpRoFUvZaBZHQKRCXPszEaV1fZQoaAZoCWgPQwiE1y5tuLtxQJSGlFKUaBVL5GgWR0CkQl/apPykdX2UKGgGaAloD0MIOL2L96NvcUCUhpRSlGgVS/VoFkdApEJ2NcW0q3V9lChoBmgJaA9DCIUKDi9IOHNAlIaUUpRoFUvZaBZHQKRC8Cq6vq11fZQoaAZoCWgPQwhZ+WUwBndyQJSGlFKUaBVL3WgWR0CkQwZuAI6bdX2UKGgGaAloD0MI/PuMC4eRcUCUhpRSlGgVS/1oFkdApEMjleWv83V9lChoBmgJaA9DCJsff2mRj3NAlIaUUpRoFUvTaBZHQKRDWw4bS7Z1fZQoaAZoCWgPQwh4mzdOigpxQJSGlFKUaBVL/WgWR0CkQ4mb9ZRsdX2UKGgGaAloD0MI1PNuLKjFcECUhpRSlGgVS9toFkdApEOIY1pCbHV9lChoBmgJaA9DCBgkfVqFzXBAlIaUUpRoFUvzaBZHQKRD0lFc6eZ1fZQoaAZoCWgPQwjFVWXflfZxQJSGlFKUaBVNAwFoFkdApEPYiX6ZY3V9lChoBmgJaA9DCFtAaD28BXJAlIaUUpRoFUv9aBZHQKREAcpb2UV1fZQoaAZoCWgPQwjUKCSZFTVzQJSGlFKUaBVNGgFoFkdApERophF3IXV9lChoBmgJaA9DCOfkRSZgwG1AlIaUUpRoFUvyaBZHQKREp9LpRoB1fZQoaAZoCWgPQwikUBa+fv9wQJSGlFKUaBVL1mgWR0CkRK3Dej20dX2UKGgGaAloD0MIzXfwEwepcUCUhpRSlGgVS/toFkdApETGMS9M9XV9lChoBmgJaA9DCMxB0NFqFnJAlIaUUpRoFU0FAWgWR0CkRP+4Cp3pdX2UKGgGaAloD0MI1IBB0mcHckCUhpRSlGgVS/toFkdApEUWqJdjXnV9lChoBmgJaA9DCGFwzR39m3JAlIaUUpRoFU0HAWgWR0CkRU2K2rn1dX2UKGgGaAloD0MIRgvQthrob0CUhpRSlGgVS+VoFkdApEVpSiudPXV9lChoBmgJaA9DCK5lMhxP/m9AlIaUUpRoFUvvaBZHQKRFl/J/5L11fZQoaAZoCWgPQwgw2A3blqlvQJSGlFKUaBVL22gWR0CkRdj50r9VdX2UKGgGaAloD0MI3VuRmOCEc0CUhpRSlGgVS+loFkdApEX/b9If83V9lChoBmgJaA9DCLAD54yoNHJAlIaUUpRoFUvTaBZHQKRGE5/b0vp1fZQoaAZoCWgPQwg+6xotBwZxQJSGlFKUaBVL/2gWR0CkRhPl+3H8dX2UKGgGaAloD0MIlpf8T76wckCUhpRSlGgVTTIBaBZHQKRGZri2lVN1fZQoaAZoCWgPQwgW+fVDLG5yQJSGlFKUaBVL9WgWR0CkRnJrcj7idX2UKGgGaAloD0MI499nXPiWcUCUhpRSlGgVS/loFkdApEamVqveQHV9lChoBmgJaA9DCM3psphYFXNAlIaUUpRoFUvyaBZHQKRG+/QBxPx1fZQoaAZoCWgPQwhLdQEvM1tzQJSGlFKUaBVL3mgWR0CkRwhjFyaNdX2UKGgGaAloD0MI7N0f79UEdECUhpRSlGgVS9toFkdApEcY4sEq2HV9lChoBmgJaA9DCA2OklfnGW9AlIaUUpRoFUvsaBZHQKRHKF+uvEF1fZQoaAZoCWgPQwhiEi7kUR9xQJSGlFKUaBVL3WgWR0CkR1JSR8txdX2UKGgGaAloD0MIRX9o5gkTcUCUhpRSlGgVS/JoFkdApEeg5Jbt7nV9lChoBmgJaA9DCP66050nh3JAlIaUUpRoFUvTaBZHQKRHzlf7aZh1fZQoaAZoCWgPQwiPG343naVyQJSGlFKUaBVNFwFoFkdApEhC4Wk8BHV9lChoBmgJaA9DCGNi83FtuG9AlIaUUpRoFUvcaBZHQKRIVf5ULlV1fZQoaAZoCWgPQwg6dlCJ6xNyQJSGlFKUaBVL9WgWR0CkSHesxO+JdX2UKGgGaAloD0MIavgW1o3ibkCUhpRSlGgVS+NoFkdApEh/jCHh0nV9lChoBmgJaA9DCGWO5V11DG5AlIaUUpRoFUvyaBZHQKRIqAH3UQV1fZQoaAZoCWgPQwhywRn8vfNwQJSGlFKUaBVL7WgWR0CkSPbB42S/dX2UKGgGaAloD0MIHQHcLJ6kcECUhpRSlGgVS/doFkdApElewu/UOXV9lChoBmgJaA9DCEKUL2ihmnFAlIaUUpRoFUvQaBZHQKRJeafjCHh1fZQoaAZoCWgPQwjHEtbGWHluQJSGlFKUaBVL8mgWR0CkSbAI6bONdX2UKGgGaAloD0MIG2g+5+5HcECUhpRSlGgVS/ZoFkdApEnJqynk1nV9lChoBmgJaA9DCHCUvDpHAXNAlIaUUpRoFU2nAWgWR0CkSgnAAQxvdX2UKGgGaAloD0MI/tZOlAQ3c0CUhpRSlGgVTQoBaBZHQKRKFXhfjS51fZQoaAZoCWgPQwjVQPM5N65zQJSGlFKUaBVL3GgWR0CkSiTZ6D5CdX2UKGgGaAloD0MIhnKiXQUucUCUhpRSlGgVTQ4BaBZHQKRKXUaya/h1fZQoaAZoCWgPQwjnHafoCGFxQJSGlFKUaBVNAQFoFkdApEq5bbDdg3V9lChoBmgJaA9DCB6ILNJEWnBAlIaUUpRoFUvbaBZHQKRKwUzKs+51fZQoaAZoCWgPQwh/aVGf5DpxQJSGlFKUaBVL9mgWR0CkS0oyj59FdX2UKGgGaAloD0MInFHzVTKNcECUhpRSlGgVS/RoFkdApEtNEVnEl3V9lChoBmgJaA9DCFOynISSeHBAlIaUUpRoFU0LAWgWR0CkS2jm8ujAdX2UKGgGaAloD0MICf63kl11cUCUhpRSlGgVS/JoFkdApEt2sNlRQHV9lChoBmgJaA9DCKa5FcIqWXBAlIaUUpRoFUvcaBZHQKRLhHkLhJl1fZQoaAZoCWgPQwjdlsgFJ1lyQJSGlFKUaBVL72gWR0CkTDuSW7e3dX2UKGgGaAloD0MIrrmj/2XZcUCUhpRSlGgVS+loFkdApEx6IDYAbXV9lChoBmgJaA9DCDI9YYkHd3NAlIaUUpRoFUvXaBZHQKRMlE1EVnF1fZQoaAZoCWgPQwjeV+VC5ZJxQJSGlFKUaBVL/WgWR0CkTJ6XKKYRdX2UKGgGaAloD0MIo61KIrvDc0CUhpRSlGgVS9xoFkdApEy0A93bEnVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 736,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
hf_rl_unit1_cmd_lunarlander/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1e1b52ead930965b87c05251db21d572151004e82a02d0f19e050065f58fb49
|
3 |
size 87929
|
hf_rl_unit1_cmd_lunarlander/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14349e1ab3390bd89dc4c7736b886e7afa7ec1dd676750211e5c14dd1b75ea9f
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.22431500372556, "std_reward": 26.4900327685384, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T02:03:47.504980"}
|