|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cartesinus/iva_mt_wslot |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: iva_mt_wslot-m2m100_418M-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: iva_mt_wslot |
|
type: iva_mt_wslot |
|
config: en-es |
|
split: validation |
|
args: en-es |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 69.2836 |
|
language: |
|
- en |
|
- es |
|
pipeline_tag: translation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# iva_mt_wslot-m2m100_418M-en-es |
|
|
|
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the iva_mt_wslot dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0115 |
|
- Bleu: 69.2836 |
|
- Gen Len: 20.2064 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 0.0135 | 1.0 | 2104 | 0.0122 | 66.8284 | 20.2851 | |
|
| 0.009 | 2.0 | 4208 | 0.0112 | 68.1164 | 20.1501 | |
|
| 0.0067 | 3.0 | 6312 | 0.0110 | 68.256 | 20.0603 | |
|
| 0.0051 | 4.0 | 8416 | 0.0110 | 68.7002 | 20.1219 | |
|
| 0.0037 | 5.0 | 10520 | 0.0112 | 68.699 | 20.2733 | |
|
| 0.0027 | 6.0 | 12624 | 0.0113 | 68.9916 | 20.209 | |
|
| 0.0023 | 7.0 | 14728 | 0.0115 | 69.2836 | 20.2064 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |