cartesinus's picture
Update README.md
243b802
|
raw
history blame
2.24 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- cartesinus/iva_mt_wslot
metrics:
- bleu
model-index:
- name: iva_mt_wslot-m2m100_418M-en-es
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: iva_mt_wslot
type: iva_mt_wslot
config: en-es
split: validation
args: en-es
metrics:
- name: Bleu
type: bleu
value: 69.2836
language:
- en
- es
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iva_mt_wslot-m2m100_418M-en-es
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the iva_mt_wslot dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0115
- Bleu: 69.2836
- Gen Len: 20.2064
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0135 | 1.0 | 2104 | 0.0122 | 66.8284 | 20.2851 |
| 0.009 | 2.0 | 4208 | 0.0112 | 68.1164 | 20.1501 |
| 0.0067 | 3.0 | 6312 | 0.0110 | 68.256 | 20.0603 |
| 0.0051 | 4.0 | 8416 | 0.0110 | 68.7002 | 20.1219 |
| 0.0037 | 5.0 | 10520 | 0.0112 | 68.699 | 20.2733 |
| 0.0027 | 6.0 | 12624 | 0.0113 | 68.9916 | 20.209 |
| 0.0023 | 7.0 | 14728 | 0.0115 | 69.2836 | 20.2064 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3