Mistral 7B Instruct
AWQ quantized model using https://github.com/casper-hansen/AutoAWQ.
Dependencies:
pip install git+https://github.com/huggingface/transformers.git
pip install git+https://github.com/casper-hansen/AutoAWQ.git
Example:
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_path = "mistral-7b-instruct-v0.1"
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Convert prompt to tokens
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
tokens = tokenizer(
text,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
vLLM
Support is added to vLLM:
pip install git+https://github.com/mistralai/vllm-release@add-mistral
Run using this model:
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="casperhansen/mistral-7b-instruct-v0.1-awq", quantization="awq", dtype="half")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
- Downloads last month
- 72
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.