nlp_til3 / README.md
casual's picture
End of training
14d0b83 verified
|
raw
history blame
2.33 kB
---
license: apache-2.0
base_model: casual/nlp_til2
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nlp_til3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nlp_til3
This model is a fine-tuned version of [casual/nlp_til2](https://huggingface.co/casual/nlp_til2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0052
- Precision: 0.9899
- Recall: 0.9919
- F1: 0.9909
- Accuracy: 0.9983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 219 | 0.0192 | 0.9571 | 0.9614 | 0.9592 | 0.9931 |
| No log | 2.0 | 438 | 0.0176 | 0.9607 | 0.9696 | 0.9652 | 0.9940 |
| 0.0238 | 3.0 | 657 | 0.0142 | 0.9702 | 0.9692 | 0.9697 | 0.9948 |
| 0.0238 | 4.0 | 876 | 0.0105 | 0.9764 | 0.9744 | 0.9754 | 0.9958 |
| 0.0201 | 5.0 | 1095 | 0.0093 | 0.9839 | 0.9804 | 0.9822 | 0.9969 |
| 0.0201 | 6.0 | 1314 | 0.0080 | 0.9832 | 0.9878 | 0.9855 | 0.9974 |
| 0.0147 | 7.0 | 1533 | 0.0078 | 0.9850 | 0.9858 | 0.9854 | 0.9975 |
| 0.0147 | 8.0 | 1752 | 0.0071 | 0.9835 | 0.9892 | 0.9863 | 0.9976 |
| 0.0147 | 9.0 | 1971 | 0.0053 | 0.9899 | 0.9911 | 0.9905 | 0.9983 |
| 0.0106 | 10.0 | 2190 | 0.0052 | 0.9899 | 0.9919 | 0.9909 | 0.9983 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1