my_awesome_model / README.md
cdong's picture
End of training
1a19bcf
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1882
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 1 | 0.6856 | 0.5 |
| No log | 2.0 | 2 | 0.6825 | 0.5 |
| No log | 3.0 | 3 | 0.6796 | 0.5 |
| No log | 4.0 | 4 | 0.6775 | 0.5 |
| No log | 5.0 | 5 | 0.6750 | 0.5 |
| No log | 6.0 | 6 | 0.6718 | 0.5 |
| No log | 7.0 | 7 | 0.6680 | 0.5 |
| No log | 8.0 | 8 | 0.6613 | 0.5 |
| No log | 9.0 | 9 | 0.6675 | 0.5 |
| No log | 10.0 | 10 | 0.6638 | 0.5 |
| No log | 11.0 | 11 | 0.6603 | 0.5 |
| No log | 12.0 | 12 | 0.6568 | 0.5 |
| No log | 13.0 | 13 | 0.6528 | 0.5 |
| No log | 14.0 | 14 | 0.6459 | 0.5 |
| No log | 15.0 | 15 | 0.6389 | 0.5 |
| No log | 16.0 | 16 | 0.6246 | 0.5 |
| No log | 17.0 | 17 | 0.6152 | 0.5 |
| No log | 18.0 | 18 | 0.6050 | 0.5 |
| No log | 19.0 | 19 | 0.5939 | 0.5 |
| No log | 20.0 | 20 | 0.5820 | 0.5 |
| No log | 21.0 | 21 | 0.5707 | 0.5 |
| No log | 22.0 | 22 | 0.5604 | 0.5 |
| No log | 23.0 | 23 | 0.5504 | 0.5 |
| No log | 24.0 | 24 | 0.5376 | 0.5 |
| No log | 25.0 | 25 | 0.5233 | 1.0 |
| No log | 26.0 | 26 | 0.5108 | 1.0 |
| No log | 27.0 | 27 | 0.4983 | 1.0 |
| No log | 28.0 | 28 | 0.4864 | 1.0 |
| No log | 29.0 | 29 | 0.4744 | 1.0 |
| No log | 30.0 | 30 | 0.4632 | 1.0 |
| No log | 31.0 | 31 | 0.4523 | 1.0 |
| No log | 32.0 | 32 | 0.4423 | 1.0 |
| No log | 33.0 | 33 | 0.4331 | 1.0 |
| No log | 34.0 | 34 | 0.4246 | 1.0 |
| No log | 35.0 | 35 | 0.4168 | 1.0 |
| No log | 36.0 | 36 | 0.4089 | 1.0 |
| No log | 37.0 | 37 | 0.4007 | 1.0 |
| No log | 38.0 | 38 | 0.3936 | 1.0 |
| No log | 39.0 | 39 | 0.3873 | 1.0 |
| No log | 40.0 | 40 | 0.3795 | 1.0 |
| No log | 41.0 | 41 | 0.3698 | 1.0 |
| No log | 42.0 | 42 | 0.3599 | 1.0 |
| No log | 43.0 | 43 | 0.3509 | 1.0 |
| No log | 44.0 | 44 | 0.3430 | 1.0 |
| No log | 45.0 | 45 | 0.3359 | 1.0 |
| No log | 46.0 | 46 | 0.3289 | 1.0 |
| No log | 47.0 | 47 | 0.3204 | 1.0 |
| No log | 48.0 | 48 | 0.3130 | 1.0 |
| No log | 49.0 | 49 | 0.3065 | 1.0 |
| No log | 50.0 | 50 | 0.2998 | 1.0 |
| No log | 51.0 | 51 | 0.2943 | 1.0 |
| No log | 52.0 | 52 | 0.2889 | 1.0 |
| No log | 53.0 | 53 | 0.2832 | 1.0 |
| No log | 54.0 | 54 | 0.2783 | 1.0 |
| No log | 55.0 | 55 | 0.2733 | 1.0 |
| No log | 56.0 | 56 | 0.2693 | 1.0 |
| No log | 57.0 | 57 | 0.2658 | 1.0 |
| No log | 58.0 | 58 | 0.2625 | 1.0 |
| No log | 59.0 | 59 | 0.2591 | 1.0 |
| No log | 60.0 | 60 | 0.2562 | 1.0 |
| No log | 61.0 | 61 | 0.2531 | 1.0 |
| No log | 62.0 | 62 | 0.2497 | 1.0 |
| No log | 63.0 | 63 | 0.2460 | 1.0 |
| No log | 64.0 | 64 | 0.2424 | 1.0 |
| No log | 65.0 | 65 | 0.2389 | 1.0 |
| No log | 66.0 | 66 | 0.2356 | 1.0 |
| No log | 67.0 | 67 | 0.2329 | 1.0 |
| No log | 68.0 | 68 | 0.2300 | 1.0 |
| No log | 69.0 | 69 | 0.2269 | 1.0 |
| No log | 70.0 | 70 | 0.2243 | 1.0 |
| No log | 71.0 | 71 | 0.2212 | 1.0 |
| No log | 72.0 | 72 | 0.2186 | 1.0 |
| No log | 73.0 | 73 | 0.2158 | 1.0 |
| No log | 74.0 | 74 | 0.2129 | 1.0 |
| No log | 75.0 | 75 | 0.2104 | 1.0 |
| No log | 76.0 | 76 | 0.2082 | 1.0 |
| No log | 77.0 | 77 | 0.2061 | 1.0 |
| No log | 78.0 | 78 | 0.2043 | 1.0 |
| No log | 79.0 | 79 | 0.2029 | 1.0 |
| No log | 80.0 | 80 | 0.2017 | 1.0 |
| No log | 81.0 | 81 | 0.2005 | 1.0 |
| No log | 82.0 | 82 | 0.1994 | 1.0 |
| No log | 83.0 | 83 | 0.1981 | 1.0 |
| No log | 84.0 | 84 | 0.1969 | 1.0 |
| No log | 85.0 | 85 | 0.1959 | 1.0 |
| No log | 86.0 | 86 | 0.1951 | 1.0 |
| No log | 87.0 | 87 | 0.1943 | 1.0 |
| No log | 88.0 | 88 | 0.1935 | 1.0 |
| No log | 89.0 | 89 | 0.1928 | 1.0 |
| No log | 90.0 | 90 | 0.1920 | 1.0 |
| No log | 91.0 | 91 | 0.1913 | 1.0 |
| No log | 92.0 | 92 | 0.1908 | 1.0 |
| No log | 93.0 | 93 | 0.1904 | 1.0 |
| No log | 94.0 | 94 | 0.1900 | 1.0 |
| No log | 95.0 | 95 | 0.1894 | 1.0 |
| No log | 96.0 | 96 | 0.1890 | 1.0 |
| No log | 97.0 | 97 | 0.1887 | 1.0 |
| No log | 98.0 | 98 | 0.1884 | 1.0 |
| No log | 99.0 | 99 | 0.1883 | 1.0 |
| No log | 100.0 | 100 | 0.1882 | 1.0 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1
- Datasets 2.14.7
- Tokenizers 0.13.2