metadata
base_model: microsoft/mpnet-base
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: >-
A carefully balanced male stands on one foot near a clean ocean beach
area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- >-
A man in a blue shirt leans on a wall beside a road with a blue van and
red car with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A construction worker peeking out of a manhole while his coworker sits on
the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9141859052247874
name: Cosine Accuracy
- type: dot_accuracy
value: 0.08444714459295262
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9097812879708383
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9097812879708383
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9141859052247874
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.926463912846119
name: Cosine Accuracy
- type: dot_accuracy
value: 0.07353608715388107
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9187471629596006
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9179906188530791
name: Euclidean Accuracy
- type: max_accuracy
value: 0.926463912846119
name: Max Accuracy
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chanbistec/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9142 |
dot_accuracy | 0.0844 |
manhattan_accuracy | 0.9098 |
euclidean_accuracy | 0.9098 |
max_accuracy | 0.9142 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9265 |
dot_accuracy | 0.0735 |
manhattan_accuracy | 0.9187 |
euclidean_accuracy | 0.918 |
max_accuracy | 0.9265 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6832 | - |
0.016 | 100 | 3.0282 | 1.5782 | 0.7752 | - |
0.032 | 200 | 1.2529 | 0.9154 | 0.7991 | - |
0.048 | 300 | 1.4472 | 0.7901 | 0.8103 | - |
0.064 | 400 | 0.9059 | 0.7468 | 0.8114 | - |
0.08 | 500 | 0.8663 | 0.8423 | 0.7981 | - |
0.096 | 600 | 1.0836 | 0.8995 | 0.8010 | - |
0.112 | 700 | 0.9315 | 0.8971 | 0.8100 | - |
0.128 | 800 | 1.1273 | 0.9654 | 0.8012 | - |
0.144 | 900 | 1.1194 | 0.9318 | 0.8303 | - |
0.16 | 1000 | 1.0911 | 0.9048 | 0.8038 | - |
0.176 | 1100 | 1.1332 | 0.9340 | 0.8039 | - |
0.192 | 1200 | 1.0154 | 0.9041 | 0.8076 | - |
0.208 | 1300 | 0.7995 | 0.9301 | 0.7959 | - |
0.224 | 1400 | 0.7614 | 0.8275 | 0.8071 | - |
0.24 | 1500 | 0.8724 | 0.7973 | 0.8173 | - |
0.256 | 1600 | 0.6751 | 0.7916 | 0.8197 | - |
0.272 | 1700 | 0.8933 | 0.8572 | 0.8194 | - |
0.288 | 1800 | 0.8585 | 0.8560 | 0.8056 | - |
0.304 | 1900 | 0.8354 | 0.7987 | 0.8123 | - |
0.32 | 2000 | 0.7484 | 0.7559 | 0.8348 | - |
0.336 | 2100 | 0.6047 | 0.7532 | 0.8471 | - |
0.352 | 2200 | 0.6221 | 0.6956 | 0.8665 | - |
0.368 | 2300 | 0.8332 | 0.7214 | 0.8542 | - |
0.384 | 2400 | 0.7755 | 0.7007 | 0.8481 | - |
0.4 | 2500 | 0.6912 | 0.7505 | 0.8499 | - |
0.416 | 2600 | 0.6169 | 0.6536 | 0.8591 | - |
0.432 | 2700 | 0.8907 | 0.7240 | 0.8560 | - |
0.448 | 2800 | 0.8576 | 0.6790 | 0.8499 | - |
0.464 | 2900 | 0.8057 | 0.6870 | 0.8575 | - |
0.48 | 3000 | 0.6928 | 0.6540 | 0.8641 | - |
0.496 | 3100 | 0.7566 | 0.6419 | 0.8682 | - |
0.512 | 3200 | 0.5757 | 0.6109 | 0.8783 | - |
0.528 | 3300 | 0.601 | 0.5481 | 0.8914 | - |
0.544 | 3400 | 0.5105 | 0.5853 | 0.8820 | - |
0.56 | 3500 | 0.5116 | 0.5918 | 0.8961 | - |
0.576 | 3600 | 0.495 | 0.5546 | 0.8897 | - |
0.592 | 3700 | 0.5585 | 0.5457 | 0.8970 | - |
0.608 | 3800 | 0.4778 | 0.5056 | 0.9020 | - |
0.624 | 3900 | 0.5116 | 0.5203 | 0.9019 | - |
0.64 | 4000 | 0.753 | 0.5490 | 0.9019 | - |
0.656 | 4100 | 0.9207 | 0.5447 | 0.9049 | - |
0.672 | 4200 | 0.8695 | 0.4996 | 0.9055 | - |
0.688 | 4300 | 0.6867 | 0.4825 | 0.9107 | - |
0.704 | 4400 | 0.5961 | 0.4670 | 0.9166 | - |
0.72 | 4500 | 0.5547 | 0.4748 | 0.9104 | - |
0.736 | 4600 | 0.6145 | 0.4636 | 0.9145 | - |
0.752 | 4700 | 0.6643 | 0.4806 | 0.9128 | - |
0.768 | 4800 | 0.6134 | 0.4521 | 0.9110 | - |
0.784 | 4900 | 0.5847 | 0.4627 | 0.9080 | - |
0.8 | 5000 | 0.6482 | 0.4853 | 0.9107 | - |
0.816 | 5100 | 0.5103 | 0.4374 | 0.9104 | - |
0.832 | 5200 | 0.5639 | 0.4306 | 0.9089 | - |
0.848 | 5300 | 0.5247 | 0.4418 | 0.9116 | - |
0.864 | 5400 | 0.6094 | 0.4564 | 0.9101 | - |
0.88 | 5500 | 0.5296 | 0.4394 | 0.9092 | - |
0.896 | 5600 | 0.5469 | 0.4316 | 0.9101 | - |
0.912 | 5700 | 0.6061 | 0.4258 | 0.9124 | - |
0.928 | 5800 | 0.5456 | 0.4167 | 0.9113 | - |
0.944 | 5900 | 0.6776 | 0.4168 | 0.9108 | - |
0.96 | 6000 | 0.7401 | 0.4267 | 0.9139 | - |
0.976 | 6100 | 0.6568 | 0.4227 | 0.9140 | - |
0.992 | 6200 | 0.0002 | 0.4224 | 0.9142 | - |
1.0 | 6250 | - | - | - | 0.9265 |
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}