Edit model card

coding_llamaduo_result2

This model is a fine-tuned version of google/gemma-7b on the chansung/merged_ds_coding dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.8192 1.0 122 1.2006
0.6377 2.0 245 1.1304
0.5334 3.0 367 1.1456
0.4454 4.0 490 1.1935
0.408 4.98 610 1.2247

Framework versions

  • PEFT 0.7.1
  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chansung/coding_llamaduo_result2

Base model

google/gemma-7b
Adapter
(9105)
this model

Dataset used to train chansung/coding_llamaduo_result2