See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
hub_model_id: chaosIsRythmic/mimic3-mistral-7B-v0.1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# This will be the path used for the data when it is saved to the Volume in the cloud.
- path: data.jsonl
ds_type: json
type:
# JSONL file contains question, context, answer fields per line.
# This gets mapped to instruction, input, output axolotl tags.
field_instruction: question
field_input: context
field_output: answer
# Format is used by axolotl to generate the prompt.
format: |-
[INST] Using the medical notes below, assign the right ICD-9 codes.
{input}
{instruction} [/INST]
tokens: # add new control tokens from the dataset to the model
- "[INST]"
- " [/INST]"
- "[SQL]"
- " [/SQL]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.2
output_dir: ./lora-out
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
- embed_tokens
- lm_head
wandb_project: mimic3
wandb_entity:
wandb_watch:
wandb_run_id:
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
gradient_accumulation_steps: 1
micro_batch_size: 6
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001
bf16: auto
fp16: false
tf32: false
train_on_inputs: false
group_by_length: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
saves_per_epoch: 1
evals_per_epoch: 4
eval_max_new_tokens: 128
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
mimic3-mistral-7B-v0.1
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 12
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9923 | 0.0013 | 1 | 2.1006 |
0.3728 | 0.2506 | 200 | 0.3790 |
0.3122 | 0.5013 | 400 | 0.3571 |
0.305 | 0.7519 | 600 | 0.3203 |
0.2929 | 1.0025 | 800 | 0.3158 |
0.2873 | 1.2531 | 1000 | 0.3000 |
0.2654 | 1.5038 | 1200 | 0.2971 |
0.3343 | 1.7544 | 1400 | 0.2846 |
0.2272 | 2.0050 | 1600 | 0.2901 |
0.1976 | 2.2556 | 1800 | 0.2900 |
0.2315 | 2.5063 | 2000 | 0.2829 |
0.1913 | 2.7569 | 2200 | 0.2852 |
0.2578 | 3.0075 | 2400 | 0.2809 |
0.1614 | 3.2581 | 2600 | 0.3104 |
0.1526 | 3.5088 | 2800 | 0.3171 |
0.1712 | 3.7594 | 3000 | 0.3042 |
0.1016 | 4.0100 | 3200 | 0.3367 |
0.0658 | 4.2607 | 3400 | 0.4388 |
0.0636 | 4.5113 | 3600 | 0.4601 |
0.0534 | 4.7619 | 3800 | 0.4398 |
0.0363 | 5.0125 | 4000 | 0.4785 |
0.0016 | 5.2632 | 4200 | 0.6498 |
0.0183 | 5.5138 | 4400 | 0.6769 |
0.0185 | 5.7644 | 4600 | 0.6757 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for chaosIsRythmic/mimic3-mistral-7B-v0.1
Base model
mistralai/Mistral-7B-v0.1