metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum-epoch4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 0
t5-small-finetuned-xsum-epoch4
This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.0 | 1.0 | 6377 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 2.0 | 12754 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 3.0 | 19131 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 4.0 | 25508 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0.dev20230127+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2