metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- chargoddard/prometheus-llama-3-8b-preference
- chargoddard/prometheus-llama-3-8b-absolute
datasets:
- prometheus-eval/Preference-Collection
- prometheus-eval/Feedback-Collection
model-index:
- name: prometheus-2-llama-3-8b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.89
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.8
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.25
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.02
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.78
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.19
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
name: Open LLM Leaderboard
prometheus-2-llama-3-8b
Replication of prometheus-7b-v2.0 using Llama 3 8B Instruct as a base model.
As in their paper, two different models were trained on their preference and feedback datasets then linearly merged at equal weight.
Training hyperparameters:
- 1 epoch
- Learning rate 1e-5
- Effective batch size 128
- Cosine annealing
- ~5% warmup
Uses Llama 3 Instruct prompt format and the same prompts as prometheus-7b-v2.0. See that readme for info.
Citations
@misc{kim2023prometheus,
title={Prometheus: Inducing Fine-grained Evaluation Capability in Language Models},
author={Seungone Kim and Jamin Shin and Yejin Cho and Joel Jang and Shayne Longpre and Hwaran Lee and Sangdoo Yun and Seongjin Shin and Sungdong Kim and James Thorne and Minjoon Seo},
year={2023},
eprint={2310.08491},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{kim2024prometheus,
title={Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models},
author={Seungone Kim and Juyoung Suk and Shayne Longpre and Bill Yuchen Lin and Jamin Shin and Sean Welleck and Graham Neubig and Moontae Lee and Kyungjae Lee and Minjoon Seo},
year={2024},
eprint={2405.01535},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.16 |
IFEval (0-Shot) | 52.89 |
BBH (3-Shot) | 27.80 |
MATH Lvl 5 (4-Shot) | 7.25 |
GPQA (0-shot) | 3.02 |
MuSR (0-shot) | 0.78 |
MMLU-PRO (5-shot) | 23.19 |