metadata
base_model: Helsinki-NLP/opus-mt-en-ar
license: apache-2.0
metrics:
- bleu
tags:
- generated_from_trainer
model-index:
- name: Tounsify-v0.10-shuffle
results: []
Tounsify-v0.10-shuffle
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5449
- Bleu: 35.7955
- Gen Len: 9.4516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 62 | 2.2061 | 11.8171 | 9.5161 |
No log | 2.0 | 124 | 1.5962 | 21.0419 | 9.3065 |
No log | 3.0 | 186 | 1.2980 | 24.4645 | 9.1935 |
No log | 4.0 | 248 | 1.2160 | 28.5544 | 9.2742 |
No log | 5.0 | 310 | 1.1631 | 31.2379 | 9.1452 |
No log | 6.0 | 372 | 1.1556 | 32.39 | 9.2097 |
No log | 7.0 | 434 | 1.1650 | 32.8728 | 9.2419 |
No log | 8.0 | 496 | 1.1666 | 28.6033 | 9.0645 |
0.9718 | 9.0 | 558 | 1.1976 | 25.7388 | 10.0484 |
0.9718 | 10.0 | 620 | 1.1648 | 32.5972 | 9.2258 |
0.9718 | 11.0 | 682 | 1.1939 | 31.9682 | 9.0806 |
0.9718 | 12.0 | 744 | 1.2021 | 33.2574 | 9.371 |
0.9718 | 13.0 | 806 | 1.2006 | 32.1413 | 9.2258 |
0.9718 | 14.0 | 868 | 1.2208 | 33.0105 | 9.3065 |
0.9718 | 15.0 | 930 | 1.2888 | 31.9994 | 9.4194 |
0.9718 | 16.0 | 992 | 1.2568 | 33.6234 | 9.3226 |
0.0484 | 17.0 | 1054 | 1.2758 | 32.9602 | 9.3226 |
0.0484 | 18.0 | 1116 | 1.2841 | 33.2857 | 9.2903 |
0.0484 | 19.0 | 1178 | 1.2968 | 32.4006 | 9.2419 |
0.0484 | 20.0 | 1240 | 1.3066 | 32.7878 | 9.1935 |
0.0484 | 21.0 | 1302 | 1.3192 | 32.1068 | 9.3871 |
0.0484 | 22.0 | 1364 | 1.3158 | 32.7501 | 9.3226 |
0.0484 | 23.0 | 1426 | 1.3553 | 33.1188 | 9.3065 |
0.0484 | 24.0 | 1488 | 1.3182 | 33.9851 | 9.6613 |
0.0137 | 25.0 | 1550 | 1.3493 | 32.7566 | 9.3226 |
0.0137 | 26.0 | 1612 | 1.3419 | 33.8387 | 9.5 |
0.0137 | 27.0 | 1674 | 1.3501 | 32.2899 | 9.371 |
0.0137 | 28.0 | 1736 | 1.3520 | 32.1795 | 9.3226 |
0.0137 | 29.0 | 1798 | 1.3676 | 33.7723 | 9.5645 |
0.0137 | 30.0 | 1860 | 1.3832 | 32.8767 | 9.3548 |
0.0137 | 31.0 | 1922 | 1.3814 | 33.3269 | 9.5 |
0.0137 | 32.0 | 1984 | 1.3833 | 32.8231 | 9.371 |
0.0108 | 33.0 | 2046 | 1.3828 | 32.1068 | 9.4194 |
0.0108 | 34.0 | 2108 | 1.3976 | 33.9396 | 9.4677 |
0.0108 | 35.0 | 2170 | 1.4015 | 32.1225 | 9.1613 |
0.0108 | 36.0 | 2232 | 1.4058 | 32.7627 | 9.371 |
0.0108 | 37.0 | 2294 | 1.4213 | 32.1195 | 9.2581 |
0.0108 | 38.0 | 2356 | 1.4300 | 33.0876 | 9.4355 |
0.0108 | 39.0 | 2418 | 1.4263 | 32.7883 | 9.3387 |
0.0108 | 40.0 | 2480 | 1.4390 | 31.3041 | 9.3387 |
0.0107 | 41.0 | 2542 | 1.4405 | 33.2307 | 9.3871 |
0.0107 | 42.0 | 2604 | 1.4421 | 32.5338 | 9.3871 |
0.0107 | 43.0 | 2666 | 1.4617 | 31.5815 | 9.3548 |
0.0107 | 44.0 | 2728 | 1.4517 | 32.2336 | 9.3226 |
0.0107 | 45.0 | 2790 | 1.4708 | 32.5791 | 9.4194 |
0.0107 | 46.0 | 2852 | 1.4665 | 33.5456 | 9.4516 |
0.0107 | 47.0 | 2914 | 1.4574 | 32.4045 | 9.3871 |
0.0107 | 48.0 | 2976 | 1.4585 | 34.6859 | 9.4677 |
0.0099 | 49.0 | 3038 | 1.4733 | 34.7 | 9.4355 |
0.0099 | 50.0 | 3100 | 1.4713 | 34.7405 | 9.4032 |
0.0099 | 51.0 | 3162 | 1.4740 | 34.6316 | 9.4355 |
0.0099 | 52.0 | 3224 | 1.4867 | 35.6172 | 9.4516 |
0.0099 | 53.0 | 3286 | 1.4845 | 34.6718 | 9.5 |
0.0099 | 54.0 | 3348 | 1.4891 | 35.3407 | 9.4194 |
0.0099 | 55.0 | 3410 | 1.4868 | 35.243 | 9.3871 |
0.0099 | 56.0 | 3472 | 1.4695 | 35.326 | 9.4839 |
0.0069 | 57.0 | 3534 | 1.4851 | 35.3597 | 9.4355 |
0.0069 | 58.0 | 3596 | 1.4960 | 34.1363 | 9.4032 |
0.0069 | 59.0 | 3658 | 1.4808 | 34.8965 | 9.4677 |
0.0069 | 60.0 | 3720 | 1.4891 | 34.7792 | 9.4839 |
0.0069 | 61.0 | 3782 | 1.4882 | 34.0964 | 9.4839 |
0.0069 | 62.0 | 3844 | 1.4952 | 34.0563 | 9.5 |
0.0069 | 63.0 | 3906 | 1.4995 | 35.5974 | 9.4839 |
0.0069 | 64.0 | 3968 | 1.5149 | 35.873 | 9.4194 |
0.0087 | 65.0 | 4030 | 1.5180 | 35.3407 | 9.4516 |
0.0087 | 66.0 | 4092 | 1.5169 | 35.9762 | 9.4677 |
0.0087 | 67.0 | 4154 | 1.5101 | 35.8579 | 9.4677 |
0.0087 | 68.0 | 4216 | 1.5098 | 35.2643 | 9.4677 |
0.0087 | 69.0 | 4278 | 1.5119 | 35.2643 | 9.4677 |
0.0087 | 70.0 | 4340 | 1.5109 | 35.0762 | 9.4194 |
0.0087 | 71.0 | 4402 | 1.5118 | 35.3965 | 9.4839 |
0.0087 | 72.0 | 4464 | 1.5099 | 35.3965 | 9.4839 |
0.0056 | 73.0 | 4526 | 1.5249 | 35.2791 | 9.5 |
0.0056 | 74.0 | 4588 | 1.5197 | 35.2791 | 9.4677 |
0.0056 | 75.0 | 4650 | 1.5288 | 35.2021 | 9.4516 |
0.0056 | 76.0 | 4712 | 1.5323 | 35.2021 | 9.4516 |
0.0056 | 77.0 | 4774 | 1.5264 | 35.2021 | 9.4516 |
0.0056 | 78.0 | 4836 | 1.5266 | 35.2021 | 9.4516 |
0.0056 | 79.0 | 4898 | 1.5285 | 35.2021 | 9.4516 |
0.0056 | 80.0 | 4960 | 1.5326 | 35.7955 | 9.4516 |
0.0058 | 81.0 | 5022 | 1.5339 | 35.7955 | 9.4516 |
0.0058 | 82.0 | 5084 | 1.5435 | 35.2021 | 9.4516 |
0.0058 | 83.0 | 5146 | 1.5421 | 35.2021 | 9.4516 |
0.0058 | 84.0 | 5208 | 1.5441 | 35.7955 | 9.4516 |
0.0058 | 85.0 | 5270 | 1.5484 | 35.7955 | 9.4516 |
0.0058 | 86.0 | 5332 | 1.5527 | 35.7955 | 9.4516 |
0.0058 | 87.0 | 5394 | 1.5497 | 35.7955 | 9.4516 |
0.0058 | 88.0 | 5456 | 1.5504 | 35.7955 | 9.4516 |
0.0055 | 89.0 | 5518 | 1.5485 | 35.7955 | 9.4516 |
0.0055 | 90.0 | 5580 | 1.5484 | 35.7955 | 9.4516 |
0.0055 | 91.0 | 5642 | 1.5496 | 35.7955 | 9.4516 |
0.0055 | 92.0 | 5704 | 1.5475 | 35.739 | 9.4516 |
0.0055 | 93.0 | 5766 | 1.5438 | 35.739 | 9.4516 |
0.0055 | 94.0 | 5828 | 1.5464 | 35.739 | 9.4516 |
0.0055 | 95.0 | 5890 | 1.5461 | 35.739 | 9.4516 |
0.0055 | 96.0 | 5952 | 1.5467 | 35.7955 | 9.4516 |
0.0045 | 97.0 | 6014 | 1.5452 | 35.7955 | 9.4516 |
0.0045 | 98.0 | 6076 | 1.5449 | 35.7955 | 9.4516 |
0.0045 | 99.0 | 6138 | 1.5449 | 35.7955 | 9.4516 |
0.0045 | 100.0 | 6200 | 1.5449 | 35.7955 | 9.4516 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1