metadata
language:
- te
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr_SLR66
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- openslr
- SLR66
metrics:
- wer
model-index:
- name: xls-r-300m-te
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: openslr
name: Open SLR
args: SLR66
metrics:
- type: wer
value: 24.695121951219512
name: Test WER
- type: cer
value: 4.861934182322532
name: Test CER
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2680
- Wer: 0.3467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.0304 | 4.81 | 500 | 1.5676 | 1.0554 |
1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 |
1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 |
1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 |
1.455 | 24.04 | 2500 | 0.4213 | 0.6692 |
1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 |
1.352 | 33.65 | 3500 | 0.4074 | 0.5765 |
1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 |
1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 |
1.212 | 48.08 | 5000 | 0.3590 | 0.5317 |
1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 |
1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 |
1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 |
0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 |
0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 |
0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 |
0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 |
0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 |
0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 |
0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0