File size: 20,347 Bytes
a9c4cb8
03aff39
 
0a212f8
3796531
0a212f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c4cb8
 
ff693bf
a9c4cb8
 
ff693bf
f4e0b10
533ae75
a9c4cb8
331cb20
f507380
533ae75
 
e31a372
533ae75
331cb20
a9c4cb8
74a47ea
a9c4cb8
 
789b6ed
 
a9c4cb8
789b6ed
a9c4cb8
789b6ed
a9c4cb8
 
 
 
 
533ae75
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c4cb8
33ace7a
 
 
 
 
 
 
 
a9c4cb8
331cb20
 
 
 
 
 
ff693bf
4da61c8
331cb20
 
4da61c8
 
 
 
ff693bf
331cb20
 
a9c4cb8
 
fad5ae1
 
a24f520
a9c4cb8
a24f520
 
 
a9c4cb8
 
 
 
a24f520
 
a9c4cb8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
---
language:
- zh
model-index:
- name: Chuxin-Embedding
  results:
  - dataset:
      config: default
      name: MTEB CmedqaRetrieval (default)
      revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
      split: dev
      type: C-MTEB/CmedqaRetrieval
    metrics:
    - type: map_at_1
      value: 33.391999999999996
    - type: map_at_10
      value: 48.715
    - type: map_at_100
      value: 50.381
    - type: map_at_1000
      value: 50.456
    - type: map_at_3
      value: 43.708999999999996
    - type: map_at_5
      value: 46.405
    - type: mrr_at_1
      value: 48.612
    - type: mrr_at_10
      value: 58.67099999999999
    - type: mrr_at_100
      value: 59.38
    - type: mrr_at_1000
      value: 59.396
    - type: mrr_at_3
      value: 55.906
    - type: mrr_at_5
      value: 57.421
    - type: ndcg_at_1
      value: 48.612
    - type: ndcg_at_10
      value: 56.581
    - type: ndcg_at_100
      value: 62.422999999999995
    - type: ndcg_at_1000
      value: 63.476
    - type: ndcg_at_3
      value: 50.271
    - type: ndcg_at_5
      value: 52.79899999999999
    - type: precision_at_1
      value: 48.612
    - type: precision_at_10
      value: 11.995000000000001
    - type: precision_at_100
      value: 1.696
    - type: precision_at_1000
      value: 0.185
    - type: precision_at_3
      value: 27.465
    - type: precision_at_5
      value: 19.675
    - type: recall_at_1
      value: 33.391999999999996
    - type: recall_at_10
      value: 69.87100000000001
    - type: recall_at_100
      value: 93.078
    - type: recall_at_1000
      value: 99.55199999999999
    - type: recall_at_3
      value: 50.939
    - type: recall_at_5
      value: 58.714
    - type: main_score
      value: 56.581
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB CovidRetrieval (default)
      revision: 1271c7809071a13532e05f25fb53511ffce77117
      split: dev
      type: C-MTEB/CovidRetrieval
    metrics:
    - type: map_at_1
      value: 71.918
    - type: map_at_10
      value: 80.609
    - type: map_at_100
      value: 80.796
    - type: map_at_1000
      value: 80.798
    - type: map_at_3
      value: 79.224
    - type: map_at_5
      value: 79.96
    - type: mrr_at_1
      value: 72.076
    - type: mrr_at_10
      value: 80.61399999999999
    - type: mrr_at_100
      value: 80.801
    - type: mrr_at_1000
      value: 80.803
    - type: mrr_at_3
      value: 79.276
    - type: mrr_at_5
      value: 80.025
    - type: ndcg_at_1
      value: 72.076
    - type: ndcg_at_10
      value: 84.286
    - type: ndcg_at_100
      value: 85.14500000000001
    - type: ndcg_at_1000
      value: 85.21
    - type: ndcg_at_3
      value: 81.45400000000001
    - type: ndcg_at_5
      value: 82.781
    - type: precision_at_1
      value: 72.076
    - type: precision_at_10
      value: 9.663
    - type: precision_at_100
      value: 1.005
    - type: precision_at_1000
      value: 0.101
    - type: precision_at_3
      value: 29.398999999999997
    - type: precision_at_5
      value: 18.335
    - type: recall_at_1
      value: 71.918
    - type: recall_at_10
      value: 95.574
    - type: recall_at_100
      value: 99.473
    - type: recall_at_1000
      value: 100.0
    - type: recall_at_3
      value: 87.82900000000001
    - type: recall_at_5
      value: 90.991
    - type: main_score
      value: 84.286
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB DuRetrieval (default)
      revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
      split: dev
      type: C-MTEB/DuRetrieval
    metrics:
    - type: map_at_1
      value: 25.019999999999996
    - type: map_at_10
      value: 77.744
    - type: map_at_100
      value: 80.562
    - type: map_at_1000
      value: 80.60300000000001
    - type: map_at_3
      value: 52.642999999999994
    - type: map_at_5
      value: 67.179
    - type: mrr_at_1
      value: 86.5
    - type: mrr_at_10
      value: 91.024
    - type: mrr_at_100
      value: 91.09
    - type: mrr_at_1000
      value: 91.093
    - type: mrr_at_3
      value: 90.558
    - type: mrr_at_5
      value: 90.913
    - type: ndcg_at_1
      value: 86.5
    - type: ndcg_at_10
      value: 85.651
    - type: ndcg_at_100
      value: 88.504
    - type: ndcg_at_1000
      value: 88.887
    - type: ndcg_at_3
      value: 82.707
    - type: ndcg_at_5
      value: 82.596
    - type: precision_at_1
      value: 86.5
    - type: precision_at_10
      value: 41.595
    - type: precision_at_100
      value: 4.7940000000000005
    - type: precision_at_1000
      value: 0.48900000000000005
    - type: precision_at_3
      value: 74.233
    - type: precision_at_5
      value: 63.68000000000001
    - type: recall_at_1
      value: 25.019999999999996
    - type: recall_at_10
      value: 88.114
    - type: recall_at_100
      value: 97.442
    - type: recall_at_1000
      value: 99.39099999999999
    - type: recall_at_3
      value: 55.397
    - type: recall_at_5
      value: 73.095
    - type: main_score
      value: 85.651
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB EcomRetrieval (default)
      revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
      split: dev
      type: C-MTEB/EcomRetrieval
    metrics:
    - type: map_at_1
      value: 55.60000000000001
    - type: map_at_10
      value: 67.891
    - type: map_at_100
      value: 68.28699999999999
    - type: map_at_1000
      value: 68.28699999999999
    - type: map_at_3
      value: 64.86699999999999
    - type: map_at_5
      value: 66.652
    - type: mrr_at_1
      value: 55.60000000000001
    - type: mrr_at_10
      value: 67.891
    - type: mrr_at_100
      value: 68.28699999999999
    - type: mrr_at_1000
      value: 68.28699999999999
    - type: mrr_at_3
      value: 64.86699999999999
    - type: mrr_at_5
      value: 66.652
    - type: ndcg_at_1
      value: 55.60000000000001
    - type: ndcg_at_10
      value: 74.01100000000001
    - type: ndcg_at_100
      value: 75.602
    - type: ndcg_at_1000
      value: 75.602
    - type: ndcg_at_3
      value: 67.833
    - type: ndcg_at_5
      value: 71.005
    - type: precision_at_1
      value: 55.60000000000001
    - type: precision_at_10
      value: 9.33
    - type: precision_at_100
      value: 1.0
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 25.467000000000002
    - type: precision_at_5
      value: 16.8
    - type: recall_at_1
      value: 55.60000000000001
    - type: recall_at_10
      value: 93.30000000000001
    - type: recall_at_100
      value: 100.0
    - type: recall_at_1000
      value: 100.0
    - type: recall_at_3
      value: 76.4
    - type: recall_at_5
      value: 84.0
    - type: main_score
      value: 74.01100000000001
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB MMarcoRetrieval (default)
      revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
      split: dev
      type: C-MTEB/MMarcoRetrieval
    metrics:
    - type: map_at_1
      value: 66.24799999999999
    - type: map_at_10
      value: 75.356
    - type: map_at_100
      value: 75.653
    - type: map_at_1000
      value: 75.664
    - type: map_at_3
      value: 73.515
    - type: map_at_5
      value: 74.67099999999999
    - type: mrr_at_1
      value: 68.496
    - type: mrr_at_10
      value: 75.91499999999999
    - type: mrr_at_100
      value: 76.17399999999999
    - type: mrr_at_1000
      value: 76.184
    - type: mrr_at_3
      value: 74.315
    - type: mrr_at_5
      value: 75.313
    - type: ndcg_at_1
      value: 68.496
    - type: ndcg_at_10
      value: 79.065
    - type: ndcg_at_100
      value: 80.417
    - type: ndcg_at_1000
      value: 80.72399999999999
    - type: ndcg_at_3
      value: 75.551
    - type: ndcg_at_5
      value: 77.505
    - type: precision_at_1
      value: 68.496
    - type: precision_at_10
      value: 9.563
    - type: precision_at_100
      value: 1.024
    - type: precision_at_1000
      value: 0.105
    - type: precision_at_3
      value: 28.391
    - type: precision_at_5
      value: 18.086
    - type: recall_at_1
      value: 66.24799999999999
    - type: recall_at_10
      value: 89.97
    - type: recall_at_100
      value: 96.13199999999999
    - type: recall_at_1000
      value: 98.551
    - type: recall_at_3
      value: 80.624
    - type: recall_at_5
      value: 85.271
    - type: main_score
      value: 79.065
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB MedicalRetrieval (default)
      revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
      split: dev
      type: C-MTEB/MedicalRetrieval
    metrics:
    - type: map_at_1
      value: 61.8
    - type: map_at_10
      value: 71.101
    - type: map_at_100
      value: 71.576
    - type: map_at_1000
      value: 71.583
    - type: map_at_3
      value: 68.867
    - type: map_at_5
      value: 70.272
    - type: mrr_at_1
      value: 61.9
    - type: mrr_at_10
      value: 71.158
    - type: mrr_at_100
      value: 71.625
    - type: mrr_at_1000
      value: 71.631
    - type: mrr_at_3
      value: 68.917
    - type: mrr_at_5
      value: 70.317
    - type: ndcg_at_1
      value: 61.8
    - type: ndcg_at_10
      value: 75.624
    - type: ndcg_at_100
      value: 77.702
    - type: ndcg_at_1000
      value: 77.836
    - type: ndcg_at_3
      value: 71.114
    - type: ndcg_at_5
      value: 73.636
    - type: precision_at_1
      value: 61.8
    - type: precision_at_10
      value: 8.98
    - type: precision_at_100
      value: 0.9900000000000001
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 25.867
    - type: precision_at_5
      value: 16.74
    - type: recall_at_1
      value: 61.8
    - type: recall_at_10
      value: 89.8
    - type: recall_at_100
      value: 99.0
    - type: recall_at_1000
      value: 100.0
    - type: recall_at_3
      value: 77.60000000000001
    - type: recall_at_5
      value: 83.7
    - type: main_score
      value: 75.624
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB T2Retrieval (default)
      revision: 8731a845f1bf500a4f111cf1070785c793d10e64
      split: dev
      type: C-MTEB/T2Retrieval
    metrics:
    - type: map_at_1
      value: 27.173000000000002
    - type: map_at_10
      value: 76.454
    - type: map_at_100
      value: 80.021
    - type: map_at_1000
      value: 80.092
    - type: map_at_3
      value: 53.876999999999995
    - type: map_at_5
      value: 66.122
    - type: mrr_at_1
      value: 89.519
    - type: mrr_at_10
      value: 92.091
    - type: mrr_at_100
      value: 92.179
    - type: mrr_at_1000
      value: 92.183
    - type: mrr_at_3
      value: 91.655
    - type: mrr_at_5
      value: 91.94
    - type: ndcg_at_1
      value: 89.519
    - type: ndcg_at_10
      value: 84.043
    - type: ndcg_at_100
      value: 87.60900000000001
    - type: ndcg_at_1000
      value: 88.32799999999999
    - type: ndcg_at_3
      value: 85.623
    - type: ndcg_at_5
      value: 84.111
    - type: precision_at_1
      value: 89.519
    - type: precision_at_10
      value: 41.760000000000005
    - type: precision_at_100
      value: 4.982
    - type: precision_at_1000
      value: 0.515
    - type: precision_at_3
      value: 74.944
    - type: precision_at_5
      value: 62.705999999999996
    - type: recall_at_1
      value: 27.173000000000002
    - type: recall_at_10
      value: 82.878
    - type: recall_at_100
      value: 94.527
    - type: recall_at_1000
      value: 98.24199999999999
    - type: recall_at_3
      value: 55.589
    - type: recall_at_5
      value: 69.476
    - type: main_score
      value: 84.043
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB VideoRetrieval (default)
      revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
      split: dev
      type: C-MTEB/VideoRetrieval
    metrics:
    - type: map_at_1
      value: 70.1
    - type: map_at_10
      value: 79.62
    - type: map_at_100
      value: 79.804
    - type: map_at_1000
      value: 79.804
    - type: map_at_3
      value: 77.81700000000001
    - type: map_at_5
      value: 79.037
    - type: mrr_at_1
      value: 70.1
    - type: mrr_at_10
      value: 79.62
    - type: mrr_at_100
      value: 79.804
    - type: mrr_at_1000
      value: 79.804
    - type: mrr_at_3
      value: 77.81700000000001
    - type: mrr_at_5
      value: 79.037
    - type: ndcg_at_1
      value: 70.1
    - type: ndcg_at_10
      value: 83.83500000000001
    - type: ndcg_at_100
      value: 84.584
    - type: ndcg_at_1000
      value: 84.584
    - type: ndcg_at_3
      value: 80.282
    - type: ndcg_at_5
      value: 82.472
    - type: precision_at_1
      value: 70.1
    - type: precision_at_10
      value: 9.68
    - type: precision_at_100
      value: 1.0
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 29.133
    - type: precision_at_5
      value: 18.54
    - type: recall_at_1
      value: 70.1
    - type: recall_at_10
      value: 96.8
    - type: recall_at_100
      value: 100.0
    - type: recall_at_1000
      value: 100.0
    - type: recall_at_3
      value: 87.4
    - type: recall_at_5
      value: 92.7
    - type: main_score
      value: 83.83500000000001
    task:
      type: Retrieval
tags:
- mteb
---

# Chuxin-Embedding

<!-- Provide a quick summary of what the model is/does. -->
Chuxin-Embedding 是专为增强中文文本检索能力而设计的嵌入模型。它基于bge-m3-retromae[1],实现了预训练、微调、精调全流程。该模型在来自各个领域的大量语料库上进行训练,语料库的批量非常大。截至 2024 年 9 月 14 日, Chuxin-Embedding 在检索任务中表现出色,在 C-MTEB 中文检索排行榜上排名第一,领先的性能得分为 77.88,在AIR-Bench中文检索+重排序公开排行榜上排名第一,领先的性能得分为 64.78。

Chuxin-Embedding is a specially designed embedding model aimed at enhancing the capability of Chinese text retrieval. It is based on bge-m3-retromae[1] and implements the entire process of pre-training, fine-tuning, and refining. This model has been trained on a vast amount of corpora from various fields. As of September 14, 2024, Chuxin-Embedding has shown outstanding performance in retrieval tasks. It ranks first on the C-MTEB Chinese Retrieval Leaderboard with a leading performance score of 77.88 and also ranks first on the AIR-Bench Chinese Retrieval + Re-ranking Public Leaderboard with a leading performance score of 64.78.

## News
- 2024/10/18: LLM生成及数据清洗 [Code](https://github.com/chuxin-llm/Chuxin-Embedding/blob/main/README_LLM.md) 。
- 2024/9/14: 团队的RAG框架欢迎试用 [ragnify](https://github.com/chuxin-llm/ragnify) 。
  
- 2024/9/14: LLM generation and data clean [Code](https://github.com/chuxin-llm/Chuxin-Embedding) .
- 2024/9/14: The team's RAG framework is available for trial [ragnify](https://github.com/chuxin-llm/ragnify) .

## Training Details
![image/png](chuxinembedding.png)
基于bge-m3-retromae[1],主要改动如下:
<!-- Provide a longer summary of what this model is. -->
- 基于bge-m3-retromae[1]在亿级数据上预训练。
  - 使用BGE pretrain [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain) 完成预训练。
- 在收集的公开亿级检索数据集上实现了微调。
  - 使用BGE finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) 完成微调。
- 在收集的公开百万级检索数据集和百万级LLM合成数据集上实现了精调。
  - 使用BGE finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) 和 BGE unified_finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) 完成精调。
  - 通过 LLM (QWEN-72B) 进行数据生成,使用 LLM 为message生成新query
  - 数据清洗:
    - 简单的基于规则清洗
    - LLM判断是否可作为搜索引擎查询的query 
    - rerank模型对(query,message)评分,舍弃pos中的负例,neg中的正例

Based on bge-m3-retromae[1], the main modifications are as follows:
- Pre-trained on a billion-level dataset based on bge-m3-retromae[1].
  - Pre-training is completed using BGE pretrain [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain) .
- Fine-tuned on a publicly collected billion-level retrieval dataset.
  - Fine-tuning is completed using BGE finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).
- Refined on a publicly collected million-level retrieval dataset and a million-level LLM synthetic dataset.
  - Refining is completed using BGE finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) and BGE unified_finetune [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune).
  - Data generation is performed through LLM (QWEN-72B), using LLM to generate new query for messages.
  - Data cleaning:
    - Simple rule-based cleaning
    - LLM to determine whether a query can be used as a search engine query
    - The rerank model scores (query, message) pairs, discarding negative examples in the positive set and positive examples in the negative set.

## Collect more data for retrieval-type tasks
1. 预训练数据
      - ChineseWebText、 oasis、 oscar、 SkyPile、 wudao 
2. 微调数据
      - MTP 、webqa、nlpcc、csl、bq、atec、ccks
3. 精调数据
      - BGE-M3 、Huatuo26M-Lite 、covid ...
      - LLM 合成(BGE-M3 、Huatuo26M-Lite 、covid、wudao、wanjuan_news、mnbvc_news_wiki、mldr、medical QA...)


## Performance
**C_MTEB RETRIEVAL**
| Model                 | **Average** | **CmedqaRetrieval** | **CovidRetrieval** | **DuRetrieval** | **EcomRetrieval**   | **MedicalRetrieval** | **MMarcoRetrieval** | **T2Retrieval** | **VideoRetrieval** |
| :-------------------: | :---------: | :-------: | :------------: | :-----------: | :-----------: | :-------: | :----------: | :-------: | :----------: |
| Zhihui_LLM_Embedding | 	76.74       | 48.69     | 84.39          | 91.34         | 71.96         | 65.19     | 84.77        |88.3     | 79.31        |
|   zpoint_large_embedding_zh  | 76.36       | 47.16     | 89.14          | 89.23         | 70.74          | 68.14     | 82.38        | 83.81     | 80.26        |
| **Chuxin-Embedding** | **77.88**  | 56.58     | 84.28          | 85.65         | 74.01         | 75.62     |   79.06   | 84.04   |   83.84    |


**AIR-Bench**
| Retrieval Method       |    Reranking Model      | **Average** | **wiki_zh** | **web_zh** | **news_zh** | **healthcare_zh**   | **finance_zh** |
| :-------------------: | :---------:| :---------: | :-------: | :------------: | :-----------: | :-----------: | :----------: |
| bge-m3 | bge-reranker-large	|   64.53   | 76.11     |     67.8      | 63.25        |    62.9      |    52.61   |
| gte-Qwen2-7B-instruct  |bge-reranker-large |   63.39    | 78.09     |    67.56     | 63.14         |   61.12    | 47.02    |
| **Chuxin-Embedding** | bge-reranker-large | **64.78** |76.23     | 68.44          |     64.2    | 62.93         | 52.11     |


## Generate Embedding for text
```python
#pip install -U FlagEmbedding

from FlagEmbedding import FlagModel

model = FlagModel('chuxin-llm/Chuxin-Embedding',
                   query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                   use_fp16=True)

sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-1"]

embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

```

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Reference
1. https://huggingface.co/BAAI/bge-m3-retromae
2. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3
3. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->