metadata
pipeline_type: text-classification
widget:
- text: this is a lovely message
example_title: Example 1
multi_class: false
- text: you are an idiot and you and your family should go back to your country
example_title: Example 2
multi_class: false
language:
- en
- nl
- fr
- pt
- it
- es
- de
- da
- pl
- af
datasets:
- jigsaw_toxicity_pred
metrics:
- F1 Accuracy
citizenlab/twitter-xlm-roberta-base-sentiment-finetunned
This is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.
How to use it
from transformers import pipeline
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
sentiment_classifier("this is a lovely message")
> [{'label': 'Positive', 'score': 0.9918450713157654}]
sentiment_classifier("you are an idiot and you and your family should go back to your country")
> [{'label': 'Negative', 'score': 0.9849833846092224}]
Evaluation
precision recall f1-score support
Negative 0.57 0.14 0.23 28
Neutral 0.78 0.94 0.86 132
Positive 0.89 0.80 0.85 51
accuracy 0.80 211
macro avg 0.75 0.63 0.64 211
weighted avg 0.78 0.80 0.77 211