metadata
license: mit
base_model: almanach/camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NLP_projet
results: []
NLP_projet
This model is a fine-tuned version of almanach/camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5036
- Precision: 0.9590
- Recall: 0.9634
- F1: 0.9612
- Accuracy: 0.9636
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.7382 | 1.0 | 955 | 0.7058 | 0.9442 | 0.9551 | 0.9496 | 0.9554 |
0.6625 | 2.0 | 1910 | 0.5036 | 0.9590 | 0.9634 | 0.9612 | 0.9636 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2