Edit model card

(CleanRL) PPO Agent Playing CrazyClimber-v5

This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using CleanRL and the most up-to-date training code can be found here.

Get Started

To use this model, please install the cleanrl package with the following command:

pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id CrazyClimber-v5

Please refer to the documentation for more detail.

Command to reproduce the training

curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1

Hyperparameters

{'actor_device_ids': [0],
 'anneal_lr': True,
 'async_batch_size': 16,
 'async_update': 4,
 'batch_size': 8192,
 'capture_video': False,
 'clip_coef': 0.1,
 'cuda': True,
 'ent_coef': 0.01,
 'env_id': 'CrazyClimber-v5',
 'exp_name': 'sebulba_ppo_envpool',
 'gae_lambda': 0.95,
 'gamma': 0.99,
 'hf_entity': 'cleanrl',
 'learner_device_ids': [1, 2, 3, 4],
 'learning_rate': 0.00025,
 'max_grad_norm': 0.5,
 'minibatch_size': 2048,
 'norm_adv': True,
 'num_actor_threads': 1,
 'num_envs': 64,
 'num_minibatches': 4,
 'num_steps': 128,
 'num_updates': 6103,
 'params_queue_timeout': 0.02,
 'profile': False,
 'save_model': True,
 'seed': 1,
 'target_kl': None,
 'test_actor_learner_throughput': False,
 'torch_deterministic': True,
 'total_timesteps': 50000000,
 'track': True,
 'update_epochs': 4,
 'upload_model': True,
 'vf_coef': 0.5,
 'wandb_entity': None,
 'wandb_project_name': 'cleanRL'}
Downloads last month

-

Downloads are not tracked for this model. How to track
Video Preview
loading

Evaluation results