(CleanRL) PPO Agent Playing WizardOfWor-v5
This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using CleanRL and the most up-to-date training code can be found here.
Get Started
To use this model, please install the cleanrl
package with the following command:
pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]"
python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id WizardOfWor-v5
Please refer to the documentation for more detail.
Command to reproduce the training
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock
poetry install --all-extras
python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 1
Hyperparameters
{'anneal_lr': True,
'async_batch_size': 16,
'batch_size': 2048,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado',
'gae': True,
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1024,
'norm_adv': True,
'num_envs': 64,
'num_minibatches': 2,
'num_steps': 32,
'num_updates': 24414,
'save_model': True,
'seed': 1,
'target_kl': None,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 2,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'envpool-atari'}
Evaluation results
- mean_reward on WizardOfWor-v5self-reported5120.00 +/- 2845.28