metadata
model-index:
- name: lince-zero
results: []
license: apache-2.0
language:
- es
thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png
pipeline_tag: text-generation
Lince Zero
Lince is model fine-tuned on a massive and original corpus of Spanish instructions.
Model description 🧠
TBA
Training and evaluation data 📚
We created an instruction dataset following the format or popular datasets in the field such as Alpaca and Dolly and augmented it to reach 80k samples.
Training hyperparameters ⚙
TBA
Training results 🗒️
TBA
Example of usage 👩💻
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
model_id = "clibrain/lince-zero"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
def create_instruction(instruction: str, input_data: str = None, context: str = None) -> str:
sections = {
"Instrucción": instruction,
"Entrada": input_data,
"Contexto": context,
}
system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
prompt = system_prompt
for title, content in sections.items():
if content is not None:
prompt += f"### {title}:\n{content}\n\n"
prompt += "### Respuesta:\n"
return prompt
def generate(
instruction,
input=None,
context=None,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs
):
prompt = create_instruction(instruction, input, context)
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Respuesta:")[1].lstrip("\n")
instruction = "Dame una lista de lugares a visitar en España."
print(generate(instruction))