final-lr2e-5-bs16-fp16-2
This model is a fine-tuned version of clincolnoz/LessSexistBERT on an https://github.com/rewire-online/edos dataset. It achieves the following results on the evaluation set:
- Loss: 0.3458
- F1 Macro: 0.8374
- F1 Weighted: 0.8806
- F1: 0.7535
- Accuracy: 0.8808
- Confusion Matrix: [[2794 236] [ 241 729]]
- Confusion Matrix Norm: [[0.92211221 0.07788779] [0.24845361 0.75154639]]
- Classification Report: precision recall f1-score support 0 0.920593 0.922112 0.921352 3030.00000
1 0.755440 0.751546 0.753488 970.00000 accuracy 0.880750 0.880750 0.880750 0.88075 macro avg 0.838017 0.836829 0.837420 4000.00000 weighted avg 0.880544 0.880750 0.880645 4000.00000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
---|---|---|---|---|---|---|---|---|---|---|
0.3253 | 1.0 | 1000 | 0.3011 | 0.8256 | 0.8748 | 0.7301 | 0.878 | [[2852 178] | ||
[ 310 660]] | [[0.94125413 0.05874587] | |||||||||
[0.31958763 0.68041237]] | precision recall f1-score support | |||||||||
0 0.901961 0.941254 0.921189 3030.000 | ||||||||||
1 0.787589 0.680412 0.730088 970.000 | ||||||||||
accuracy 0.878000 0.878000 0.878000 0.878 | ||||||||||
macro avg 0.844775 0.810833 0.825639 4000.000 | ||||||||||
weighted avg 0.874226 0.878000 0.874847 4000.000 | ||||||||||
0.2439 | 2.0 | 2000 | 0.3122 | 0.8411 | 0.8848 | 0.7562 | 0.8865 | [[2842 188] | ||
[ 266 704]] | [[0.9379538 0.0620462] | |||||||||
[0.2742268 0.7257732]] | precision recall f1-score support | |||||||||
0 0.914414 0.937954 0.926035 3030.0000 | ||||||||||
1 0.789238 0.725773 0.756176 970.0000 | ||||||||||
accuracy 0.886500 0.886500 0.886500 0.8865 | ||||||||||
macro avg 0.851826 0.831863 0.841105 4000.0000 | ||||||||||
weighted avg 0.884059 0.886500 0.884844 4000.0000 | ||||||||||
0.1962 | 3.0 | 3000 | 0.3458 | 0.8374 | 0.8806 | 0.7535 | 0.8808 | [[2794 236] | ||
[ 241 729]] | [[0.92211221 0.07788779] | |||||||||
[0.24845361 0.75154639]] | precision recall f1-score support | |||||||||
0 0.920593 0.922112 0.921352 3030.00000 | ||||||||||
1 0.755440 0.751546 0.753488 970.00000 | ||||||||||
accuracy 0.880750 0.880750 0.880750 0.88075 | ||||||||||
macro avg 0.838017 0.836829 0.837420 4000.00000 | ||||||||||
weighted avg 0.880544 0.880750 0.880645 4000.00000 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for clincolnoz/LessSexistBERT-edos
Base model
google-bert/bert-base-uncased
Finetuned
clincolnoz/LessSexistBERT