|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# Mixtral MOE 2x10.7B |
|
|
|
|
|
|
|
MoE of the following models by powerful mergekit : |
|
|
|
|
|
* [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) |
|
* [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1) |
|
|
|
|
|
* Local Test |
|
* hf (pretrained=cloudyu/Mixtral_11Bx2_MoE_19B,load_in_8bit=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 64 |
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|---------|-------|------|-----:|--------|-----:|---|-----:| |
|
|hellaswag|Yaml |none | 0|acc |0.6911|± |0.0046| |
|
| | |none | 0|acc_norm|0.8647|± |0.0034| |
|
|
|
|
|
gpu code example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
``` |
|
|
|
CPU example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
|
|
``` |