NXAIR_M_mistral-7B
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0718 | 0.16 | 100 | 1.0160 |
0.9627 | 0.32 | 200 | 0.9874 |
0.8621 | 0.48 | 300 | 0.8852 |
0.8674 | 0.63 | 400 | 0.8725 |
0.8039 | 0.79 | 500 | 0.8270 |
0.7757 | 0.95 | 600 | 0.8043 |
0.5737 | 1.11 | 700 | 0.7233 |
0.6043 | 1.27 | 800 | 0.7233 |
0.5896 | 1.43 | 900 | 0.7176 |
0.5701 | 1.58 | 1000 | 0.7050 |
0.5474 | 1.74 | 1100 | 0.7020 |
0.5622 | 1.9 | 1200 | 0.6686 |
0.4321 | 2.06 | 1300 | 0.7203 |
0.4063 | 2.22 | 1400 | 0.7155 |
0.4318 | 2.38 | 1500 | 0.7143 |
0.4375 | 2.54 | 1600 | 0.7128 |
0.4377 | 2.69 | 1700 | 0.6971 |
0.4364 | 2.85 | 1800 | 0.7102 |
0.4224 | 3.01 | 1900 | 0.6962 |
0.3352 | 3.17 | 2000 | 0.7134 |
0.3973 | 3.33 | 2100 | 0.7228 |
0.3907 | 3.49 | 2200 | 0.7293 |
0.3843 | 3.65 | 2300 | 0.7406 |
0.3972 | 3.8 | 2400 | 0.7381 |
0.4118 | 3.96 | 2500 | 0.7100 |
0.3011 | 4.12 | 2600 | 0.7390 |
0.3211 | 4.28 | 2700 | 0.7564 |
0.3228 | 4.44 | 2800 | 0.7676 |
0.3051 | 4.6 | 2900 | 0.7419 |
0.3272 | 4.75 | 3000 | 0.7520 |
0.3758 | 4.91 | 3100 | 0.7169 |
0.2952 | 5.07 | 3200 | 0.8331 |
0.3521 | 5.23 | 3300 | 0.7892 |
0.3582 | 5.39 | 3400 | 0.8023 |
0.3583 | 5.55 | 3500 | 0.7672 |
0.38 | 5.71 | 3600 | 0.7964 |
0.3735 | 5.86 | 3700 | 0.7602 |
0.3332 | 6.02 | 3800 | 0.8012 |
0.2981 | 6.18 | 3900 | 0.8070 |
0.3074 | 6.34 | 4000 | 0.7881 |
0.3579 | 6.5 | 4100 | 0.7447 |
0.3639 | 6.66 | 4200 | 0.7517 |
0.3481 | 6.81 | 4300 | 0.7815 |
0.3784 | 6.97 | 4400 | 0.7393 |
0.2917 | 7.13 | 4500 | 0.7802 |
0.2979 | 7.29 | 4600 | 0.7772 |
0.3005 | 7.45 | 4700 | 0.8432 |
0.3142 | 7.61 | 4800 | 0.8144 |
0.3468 | 7.77 | 4900 | 0.7675 |
0.3559 | 7.92 | 5000 | 0.7737 |
0.3028 | 8.08 | 5100 | 0.8472 |
0.3284 | 8.24 | 5200 | 0.8341 |
0.3123 | 8.4 | 5300 | 0.8470 |
0.3408 | 8.56 | 5400 | 0.7995 |
0.3283 | 8.72 | 5500 | 0.8048 |
0.3483 | 8.87 | 5600 | 0.8527 |
0.281 | 9.03 | 5700 | 0.8267 |
0.2738 | 9.19 | 5800 | 0.8195 |
0.3095 | 9.35 | 5900 | 0.8311 |
0.2954 | 9.51 | 6000 | 0.8241 |
0.309 | 9.67 | 6100 | 0.7944 |
0.3125 | 9.83 | 6200 | 0.8135 |
0.3339 | 9.98 | 6300 | 0.8094 |
0.3295 | 10.14 | 6400 | 0.8286 |
0.341 | 10.3 | 6500 | 0.8858 |
0.3157 | 10.46 | 6600 | 0.8527 |
0.3264 | 10.62 | 6700 | 0.8476 |
0.3631 | 10.78 | 6800 | 0.8255 |
0.3428 | 10.94 | 6900 | 0.8423 |
0.2963 | 11.09 | 7000 | 0.8148 |
0.3594 | 11.25 | 7100 | 0.8159 |
0.3309 | 11.41 | 7200 | 0.8058 |
0.3535 | 11.57 | 7300 | 0.8440 |
0.3679 | 11.73 | 7400 | 0.8273 |
0.3684 | 11.89 | 7500 | 0.7772 |
0.2645 | 12.04 | 7600 | 0.8764 |
0.3003 | 12.2 | 7700 | 0.8540 |
0.3225 | 12.36 | 7800 | 0.8711 |
0.3479 | 12.52 | 7900 | 0.8292 |
0.3414 | 12.68 | 8000 | 0.8558 |
0.3338 | 12.84 | 8100 | 0.8511 |
0.3569 | 13.0 | 8200 | 0.8418 |
0.3182 | 13.15 | 8300 | 0.8521 |
0.3119 | 13.31 | 8400 | 0.9313 |
0.3432 | 13.47 | 8500 | 0.8739 |
0.3366 | 13.63 | 8600 | 0.8637 |
0.3639 | 13.79 | 8700 | 0.8404 |
0.3764 | 13.95 | 8800 | 0.8386 |
0.2987 | 14.1 | 8900 | 0.8915 |
0.3061 | 14.26 | 9000 | 0.8548 |
0.3217 | 14.42 | 9100 | 0.8387 |
0.3166 | 14.58 | 9200 | 0.8253 |
0.3369 | 14.74 | 9300 | 0.8607 |
0.3461 | 14.9 | 9400 | 0.8751 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for codewizardUV/NXAIR_M_mistral-7B_old_version
Base model
mistralai/Mistral-7B-v0.1