Edit model card

NXAIR_M_mistral-7B

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
1.0718 0.16 100 1.0160
0.9627 0.32 200 0.9874
0.8621 0.48 300 0.8852
0.8674 0.63 400 0.8725
0.8039 0.79 500 0.8270
0.7757 0.95 600 0.8043
0.5737 1.11 700 0.7233
0.6043 1.27 800 0.7233
0.5896 1.43 900 0.7176
0.5701 1.58 1000 0.7050
0.5474 1.74 1100 0.7020
0.5622 1.9 1200 0.6686
0.4321 2.06 1300 0.7203
0.4063 2.22 1400 0.7155
0.4318 2.38 1500 0.7143
0.4375 2.54 1600 0.7128
0.4377 2.69 1700 0.6971
0.4364 2.85 1800 0.7102
0.4224 3.01 1900 0.6962
0.3352 3.17 2000 0.7134
0.3973 3.33 2100 0.7228
0.3907 3.49 2200 0.7293
0.3843 3.65 2300 0.7406
0.3972 3.8 2400 0.7381
0.4118 3.96 2500 0.7100
0.3011 4.12 2600 0.7390
0.3211 4.28 2700 0.7564
0.3228 4.44 2800 0.7676
0.3051 4.6 2900 0.7419
0.3272 4.75 3000 0.7520
0.3758 4.91 3100 0.7169
0.2952 5.07 3200 0.8331
0.3521 5.23 3300 0.7892
0.3582 5.39 3400 0.8023
0.3583 5.55 3500 0.7672
0.38 5.71 3600 0.7964
0.3735 5.86 3700 0.7602
0.3332 6.02 3800 0.8012
0.2981 6.18 3900 0.8070
0.3074 6.34 4000 0.7881
0.3579 6.5 4100 0.7447
0.3639 6.66 4200 0.7517
0.3481 6.81 4300 0.7815
0.3784 6.97 4400 0.7393
0.2917 7.13 4500 0.7802
0.2979 7.29 4600 0.7772
0.3005 7.45 4700 0.8432
0.3142 7.61 4800 0.8144
0.3468 7.77 4900 0.7675
0.3559 7.92 5000 0.7737
0.3028 8.08 5100 0.8472
0.3284 8.24 5200 0.8341
0.3123 8.4 5300 0.8470
0.3408 8.56 5400 0.7995
0.3283 8.72 5500 0.8048
0.3483 8.87 5600 0.8527
0.281 9.03 5700 0.8267
0.2738 9.19 5800 0.8195
0.3095 9.35 5900 0.8311
0.2954 9.51 6000 0.8241
0.309 9.67 6100 0.7944
0.3125 9.83 6200 0.8135
0.3339 9.98 6300 0.8094
0.3295 10.14 6400 0.8286
0.341 10.3 6500 0.8858
0.3157 10.46 6600 0.8527
0.3264 10.62 6700 0.8476
0.3631 10.78 6800 0.8255
0.3428 10.94 6900 0.8423
0.2963 11.09 7000 0.8148
0.3594 11.25 7100 0.8159
0.3309 11.41 7200 0.8058
0.3535 11.57 7300 0.8440
0.3679 11.73 7400 0.8273
0.3684 11.89 7500 0.7772
0.2645 12.04 7600 0.8764
0.3003 12.2 7700 0.8540
0.3225 12.36 7800 0.8711
0.3479 12.52 7900 0.8292
0.3414 12.68 8000 0.8558
0.3338 12.84 8100 0.8511
0.3569 13.0 8200 0.8418
0.3182 13.15 8300 0.8521
0.3119 13.31 8400 0.9313
0.3432 13.47 8500 0.8739
0.3366 13.63 8600 0.8637
0.3639 13.79 8700 0.8404
0.3764 13.95 8800 0.8386
0.2987 14.1 8900 0.8915
0.3061 14.26 9000 0.8548
0.3217 14.42 9100 0.8387
0.3166 14.58 9200 0.8253
0.3369 14.74 9300 0.8607
0.3461 14.9 9400 0.8751

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for codewizardUV/NXAIR_M_mistral-7B_old_version

Adapter
(1171)
this model