cointegrated's picture
Update README.md
77a2e8b verified
|
raw
history blame
5.4 kB
metadata
license: cc-by-nc-4.0
language:
  - ace
  - ace
  - acm
  - acq
  - aeb
  - af
  - ajp
  - ak
  - am
  - apc
  - ar
  - ars
  - ary
  - arz
  - as
  - ast
  - awa
  - ay
  - azb
  - azj
  - ba
  - bm
  - ban
  - be
  - bem
  - bn
  - bho
  - bjn
  - bjn
  - bo
  - bs
  - bug
  - bg
  - ca
  - ceb
  - cs
  - cjk
  - ckb
  - crh
  - cy
  - da
  - de
  - dik
  - dyu
  - dz
  - el
  - en
  - eo
  - et
  - eu
  - ee
  - fo
  - fa
  - fj
  - fi
  - fon
  - fr
  - fur
  - ff
  - gd
  - ga
  - gl
  - gn
  - gu
  - ht
  - ha
  - he
  - hi
  - hne
  - hr
  - hu
  - hy
  - ig
  - ilo
  - id
  - is
  - it
  - jv
  - ja
  - kab
  - kac
  - kam
  - kn
  - ks
  - ks
  - ka
  - kr
  - kr
  - kk
  - kbp
  - kea
  - km
  - ki
  - rw
  - ky
  - kmb
  - kg
  - ko
  - kmr
  - lo
  - lv
  - lij
  - li
  - ln
  - lt
  - lmo
  - ltg
  - lb
  - lua
  - lg
  - luo
  - lus
  - mag
  - mai
  - ml
  - mr
  - min
  - mk
  - plt
  - mt
  - mni
  - mn
  - mos
  - mi
  - ms
  - my
  - nl
  - nn
  - nb
  - ne
  - nso
  - nus
  - ny
  - oc
  - gaz
  - ory
  - pag
  - pa
  - pap
  - pl
  - pt
  - prs
  - pbt
  - qu
  - ro
  - rn
  - ru
  - sg
  - sa
  - sat
  - scn
  - shn
  - si
  - sk
  - sl
  - sm
  - sn
  - sd
  - so
  - st
  - es
  - als
  - sc
  - sr
  - ss
  - su
  - sv
  - sw
  - szl
  - ta
  - tt
  - te
  - tg
  - tl
  - th
  - ti
  - taq
  - taq
  - tpi
  - tn
  - ts
  - tk
  - tum
  - tr
  - tw
  - tzm
  - ug
  - uk
  - umb
  - ur
  - uz
  - vec
  - vi
  - war
  - wo
  - xh
  - yi
  - yo
  - yue
  - zh
  - zh
  - zu
language_details: >-
  ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
  aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab,
  asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl,
  bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn,
  bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn,
  cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn,
  dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn,
  ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn,
  fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
  hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn,
  hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
  jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva,
  kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr,
  kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn,
  lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn,
  ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva,
  mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
  mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn,
  nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn,
  gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn,
  prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn,
  san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
  smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn,
  srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn,
  tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
  taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn,
  tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab,
  uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
  yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn
pipeline_tag: sentence-similarity

This is a port of the multilingual SONAR text encoder (https://huggingface.co/facebook/SONAR) to the transformers format from fairseq2.

Its embeddings are expected be equal to those the official implementation (https://github.com/facebookresearch/SONAR), but the latter stays the source of truth.

The encoder supports the same 202 languages as NLLB-200 (see also the source model card and FLORES-200 lang code mapping).

How to compute embeddings:

# !pip install transformers sentencepiece -q

import torch
from transformers import AutoTokenizer
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder

model_name = "cointegrated/SONAR_200_text_encoder"
encoder = M2M100Encoder.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False):
    tokenizer.src_lang = lang
    with torch.inference_mode():
        batch = tokenizer(texts, return_tensors='pt', padding=True)
        seq_embs = encoder(**batch).last_hidden_state
        mask = batch.attention_mask
        mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1)
        if norm:
            mean_emb = torch.nn.functional.normalize(mean_emb)
    return mean_emb

sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
embs = encode_mean_pool(sentences, tokenizer, encoder, lang="eng_Latn")
print(embs.shape)  
# torch.Size([2, 1024])
print(embs)
# tensor([[-0.0053,  0.0020, -0.0006,  ...,  0.0094, -0.0009,  0.0070],
#         [-0.0003, -0.0071,  0.0076,  ...,  0.0055,  0.0022, -0.0083]])

For advanced examples of usage, please take a look at the readme in https://github.com/facebookresearch/SONAR.

The model was repacked in this notebook.