metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 245.74 +/- 18.06
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
env = make_vec_env('LunarLander-v2', n_envs=16)
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=5 * 10**5)
eval_env = gym.make('LunarLander-v2')
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10, deterministic=True)
print(f"Reward mean: {mean_reward:.2f}, Reward STD: {std_reward:.2f}")