distilbert-base-uncased-finetuned-diabetes_sentences
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5278
- Accuracy: 0.8462
- F1: 0.8441
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.1171 | 1.0 | 2 | 1.1097 | 0.4103 | 0.3239 |
1.0594 | 2.0 | 4 | 1.0910 | 0.5641 | 0.4791 |
1.0633 | 3.0 | 6 | 1.0726 | 0.5897 | 0.4859 |
1.0348 | 4.0 | 8 | 1.0520 | 0.6410 | 0.5779 |
0.9992 | 5.0 | 10 | 1.0326 | 0.5385 | 0.4980 |
0.9915 | 6.0 | 12 | 1.0260 | 0.4872 | 0.4518 |
0.9447 | 7.0 | 14 | 0.9811 | 0.5641 | 0.5369 |
0.8217 | 8.0 | 16 | 0.9087 | 0.8205 | 0.8205 |
0.8067 | 9.0 | 18 | 0.8497 | 0.8462 | 0.8437 |
0.7156 | 10.0 | 20 | 0.8001 | 0.8462 | 0.8437 |
0.6859 | 11.0 | 22 | 0.7691 | 0.8462 | 0.8437 |
0.5988 | 12.0 | 24 | 0.7399 | 0.8462 | 0.8437 |
0.5365 | 13.0 | 26 | 0.6851 | 0.8462 | 0.8437 |
0.4467 | 14.0 | 28 | 0.6255 | 0.8462 | 0.8437 |
0.4347 | 15.0 | 30 | 0.5791 | 0.8462 | 0.8437 |
0.363 | 16.0 | 32 | 0.5482 | 0.8462 | 0.8437 |
0.2946 | 17.0 | 34 | 0.5359 | 0.7949 | 0.7967 |
0.2343 | 18.0 | 36 | 0.4981 | 0.7949 | 0.7967 |
0.1999 | 19.0 | 38 | 0.4467 | 0.8718 | 0.8706 |
0.1615 | 20.0 | 40 | 0.4282 | 0.8718 | 0.8706 |
0.1314 | 21.0 | 42 | 0.4236 | 0.8718 | 0.8706 |
0.1386 | 22.0 | 44 | 0.4183 | 0.8718 | 0.8706 |
0.0973 | 23.0 | 46 | 0.4291 | 0.8462 | 0.8467 |
0.0853 | 24.0 | 48 | 0.4173 | 0.8462 | 0.8467 |
0.0732 | 25.0 | 50 | 0.3749 | 0.8462 | 0.8467 |
0.0641 | 26.0 | 52 | 0.3341 | 0.8974 | 0.8971 |
0.0541 | 27.0 | 54 | 0.3223 | 0.8974 | 0.8971 |
0.0481 | 28.0 | 56 | 0.3277 | 0.8974 | 0.8971 |
0.0383 | 29.0 | 58 | 0.3415 | 0.8974 | 0.8971 |
0.036 | 30.0 | 60 | 0.3609 | 0.8974 | 0.8971 |
0.0299 | 31.0 | 62 | 0.3823 | 0.8974 | 0.8971 |
0.0321 | 32.0 | 64 | 0.4026 | 0.8974 | 0.8971 |
0.03 | 33.0 | 66 | 0.4176 | 0.8718 | 0.8706 |
0.0277 | 34.0 | 68 | 0.4201 | 0.8718 | 0.8706 |
0.0236 | 35.0 | 70 | 0.4129 | 0.8718 | 0.8706 |
0.022 | 36.0 | 72 | 0.4003 | 0.8974 | 0.8971 |
0.022 | 37.0 | 74 | 0.3865 | 0.8974 | 0.8971 |
0.0211 | 38.0 | 76 | 0.3731 | 0.8974 | 0.8971 |
0.017 | 39.0 | 78 | 0.3634 | 0.8718 | 0.8705 |
0.0188 | 40.0 | 80 | 0.3618 | 0.8718 | 0.8705 |
0.0169 | 41.0 | 82 | 0.3683 | 0.8718 | 0.8705 |
0.0161 | 42.0 | 84 | 0.3810 | 0.8718 | 0.8705 |
0.0162 | 43.0 | 86 | 0.3944 | 0.8718 | 0.8705 |
0.0141 | 44.0 | 88 | 0.4091 | 0.8974 | 0.8971 |
0.0132 | 45.0 | 90 | 0.4233 | 0.8974 | 0.8971 |
0.0143 | 46.0 | 92 | 0.4335 | 0.8718 | 0.8706 |
0.0142 | 47.0 | 94 | 0.4413 | 0.8718 | 0.8706 |
0.0125 | 48.0 | 96 | 0.4436 | 0.8718 | 0.8706 |
0.0115 | 49.0 | 98 | 0.4437 | 0.8718 | 0.8706 |
0.0106 | 50.0 | 100 | 0.4410 | 0.8462 | 0.8441 |
0.0109 | 51.0 | 102 | 0.4376 | 0.8462 | 0.8441 |
0.0119 | 52.0 | 104 | 0.4341 | 0.8462 | 0.8441 |
0.012 | 53.0 | 106 | 0.4322 | 0.8718 | 0.8705 |
0.0122 | 54.0 | 108 | 0.4314 | 0.8718 | 0.8705 |
0.0107 | 55.0 | 110 | 0.4315 | 0.8718 | 0.8705 |
0.0102 | 56.0 | 112 | 0.4324 | 0.8718 | 0.8705 |
0.0102 | 57.0 | 114 | 0.4351 | 0.8462 | 0.8441 |
0.0098 | 58.0 | 116 | 0.4379 | 0.8462 | 0.8441 |
0.009 | 59.0 | 118 | 0.4399 | 0.8462 | 0.8441 |
0.0099 | 60.0 | 120 | 0.4415 | 0.8462 | 0.8441 |
0.0094 | 61.0 | 122 | 0.4429 | 0.8462 | 0.8441 |
0.008 | 62.0 | 124 | 0.4479 | 0.8462 | 0.8441 |
0.0084 | 63.0 | 126 | 0.4531 | 0.8462 | 0.8441 |
0.0079 | 64.0 | 128 | 0.4571 | 0.8462 | 0.8441 |
0.0079 | 65.0 | 130 | 0.4607 | 0.8462 | 0.8441 |
0.0076 | 66.0 | 132 | 0.4637 | 0.8462 | 0.8441 |
0.0072 | 67.0 | 134 | 0.4659 | 0.8462 | 0.8441 |
0.0076 | 68.0 | 136 | 0.4693 | 0.8462 | 0.8441 |
0.0078 | 69.0 | 138 | 0.4726 | 0.8462 | 0.8441 |
0.0066 | 70.0 | 140 | 0.4729 | 0.8462 | 0.8441 |
0.0082 | 71.0 | 142 | 0.4711 | 0.8462 | 0.8441 |
0.0075 | 72.0 | 144 | 0.4673 | 0.8462 | 0.8441 |
0.0065 | 73.0 | 146 | 0.4645 | 0.8462 | 0.8441 |
0.0064 | 74.0 | 148 | 0.4623 | 0.8462 | 0.8441 |
0.0075 | 75.0 | 150 | 0.4613 | 0.8718 | 0.8705 |
0.0064 | 76.0 | 152 | 0.4616 | 0.8718 | 0.8705 |
0.0063 | 77.0 | 154 | 0.4627 | 0.8462 | 0.8441 |
0.0072 | 78.0 | 156 | 0.4635 | 0.8462 | 0.8441 |
0.0058 | 79.0 | 158 | 0.4636 | 0.8462 | 0.8441 |
0.006 | 80.0 | 160 | 0.4641 | 0.8462 | 0.8441 |
0.0061 | 81.0 | 162 | 0.4651 | 0.8462 | 0.8441 |
0.0054 | 82.0 | 164 | 0.4675 | 0.8462 | 0.8441 |
0.0066 | 83.0 | 166 | 0.4692 | 0.8462 | 0.8441 |
0.0056 | 84.0 | 168 | 0.4699 | 0.8462 | 0.8441 |
0.0058 | 85.0 | 170 | 0.4706 | 0.8462 | 0.8441 |
0.0056 | 86.0 | 172 | 0.4718 | 0.8462 | 0.8441 |
0.005 | 87.0 | 174 | 0.4745 | 0.8462 | 0.8441 |
0.0062 | 88.0 | 176 | 0.4766 | 0.8462 | 0.8441 |
0.0052 | 89.0 | 178 | 0.4786 | 0.8462 | 0.8441 |
0.0055 | 90.0 | 180 | 0.4801 | 0.8462 | 0.8441 |
0.0052 | 91.0 | 182 | 0.4811 | 0.8462 | 0.8441 |
0.0052 | 92.0 | 184 | 0.4818 | 0.8462 | 0.8441 |
0.0057 | 93.0 | 186 | 0.4832 | 0.8462 | 0.8441 |
0.005 | 94.0 | 188 | 0.4844 | 0.8462 | 0.8441 |
0.0055 | 95.0 | 190 | 0.4850 | 0.8462 | 0.8441 |
0.005 | 96.0 | 192 | 0.4852 | 0.8462 | 0.8441 |
0.0055 | 97.0 | 194 | 0.4860 | 0.8462 | 0.8441 |
0.0047 | 98.0 | 196 | 0.4872 | 0.8462 | 0.8441 |
0.0043 | 99.0 | 198 | 0.4889 | 0.8462 | 0.8441 |
0.0049 | 100.0 | 200 | 0.4902 | 0.8462 | 0.8441 |
0.0048 | 101.0 | 202 | 0.4909 | 0.8462 | 0.8441 |
0.0044 | 102.0 | 204 | 0.4908 | 0.8462 | 0.8441 |
0.004 | 103.0 | 206 | 0.4915 | 0.8462 | 0.8441 |
0.0044 | 104.0 | 208 | 0.4918 | 0.8462 | 0.8441 |
0.0044 | 105.0 | 210 | 0.4935 | 0.8462 | 0.8441 |
0.0043 | 106.0 | 212 | 0.4956 | 0.8462 | 0.8441 |
0.004 | 107.0 | 214 | 0.4978 | 0.8462 | 0.8441 |
0.0047 | 108.0 | 216 | 0.4987 | 0.8462 | 0.8441 |
0.0037 | 109.0 | 218 | 0.4994 | 0.8462 | 0.8441 |
0.0046 | 110.0 | 220 | 0.5012 | 0.8462 | 0.8441 |
0.004 | 111.0 | 222 | 0.5021 | 0.8462 | 0.8441 |
0.004 | 112.0 | 224 | 0.5030 | 0.8462 | 0.8441 |
0.004 | 113.0 | 226 | 0.5044 | 0.8462 | 0.8441 |
0.0039 | 114.0 | 228 | 0.5053 | 0.8462 | 0.8441 |
0.0038 | 115.0 | 230 | 0.5058 | 0.8462 | 0.8441 |
0.0041 | 116.0 | 232 | 0.5054 | 0.8462 | 0.8441 |
0.0038 | 117.0 | 234 | 0.5047 | 0.8462 | 0.8441 |
0.0035 | 118.0 | 236 | 0.5043 | 0.8462 | 0.8441 |
0.004 | 119.0 | 238 | 0.5035 | 0.8462 | 0.8441 |
0.0039 | 120.0 | 240 | 0.5029 | 0.8462 | 0.8441 |
0.0036 | 121.0 | 242 | 0.5019 | 0.8462 | 0.8441 |
0.0042 | 122.0 | 244 | 0.5012 | 0.8462 | 0.8441 |
0.0033 | 123.0 | 246 | 0.5005 | 0.8462 | 0.8441 |
0.0034 | 124.0 | 248 | 0.5003 | 0.8462 | 0.8441 |
0.0038 | 125.0 | 250 | 0.5002 | 0.8462 | 0.8441 |
0.0035 | 126.0 | 252 | 0.4998 | 0.8462 | 0.8441 |
0.0033 | 127.0 | 254 | 0.5002 | 0.8462 | 0.8441 |
0.0041 | 128.0 | 256 | 0.5010 | 0.8462 | 0.8441 |
0.0036 | 129.0 | 258 | 0.5025 | 0.8462 | 0.8441 |
0.0036 | 130.0 | 260 | 0.5037 | 0.8462 | 0.8441 |
0.0032 | 131.0 | 262 | 0.5049 | 0.8462 | 0.8441 |
0.0033 | 132.0 | 264 | 0.5061 | 0.8462 | 0.8441 |
0.0038 | 133.0 | 266 | 0.5075 | 0.8462 | 0.8441 |
0.0041 | 134.0 | 268 | 0.5087 | 0.8462 | 0.8441 |
0.0034 | 135.0 | 270 | 0.5094 | 0.8462 | 0.8441 |
0.0032 | 136.0 | 272 | 0.5107 | 0.8462 | 0.8441 |
0.0035 | 137.0 | 274 | 0.5123 | 0.8462 | 0.8441 |
0.0032 | 138.0 | 276 | 0.5138 | 0.8462 | 0.8441 |
0.0031 | 139.0 | 278 | 0.5143 | 0.8462 | 0.8441 |
0.0034 | 140.0 | 280 | 0.5145 | 0.8462 | 0.8441 |
0.0036 | 141.0 | 282 | 0.5151 | 0.8462 | 0.8441 |
0.003 | 142.0 | 284 | 0.5160 | 0.8462 | 0.8441 |
0.0034 | 143.0 | 286 | 0.5162 | 0.8462 | 0.8441 |
0.0031 | 144.0 | 288 | 0.5160 | 0.8462 | 0.8441 |
0.0031 | 145.0 | 290 | 0.5157 | 0.8462 | 0.8441 |
0.0032 | 146.0 | 292 | 0.5155 | 0.8462 | 0.8441 |
0.0029 | 147.0 | 294 | 0.5159 | 0.8462 | 0.8441 |
0.0032 | 148.0 | 296 | 0.5162 | 0.8462 | 0.8441 |
0.0036 | 149.0 | 298 | 0.5164 | 0.8462 | 0.8441 |
0.0028 | 150.0 | 300 | 0.5167 | 0.8462 | 0.8441 |
0.0026 | 151.0 | 302 | 0.5172 | 0.8462 | 0.8441 |
0.0028 | 152.0 | 304 | 0.5174 | 0.8462 | 0.8441 |
0.0031 | 153.0 | 306 | 0.5172 | 0.8462 | 0.8441 |
0.0029 | 154.0 | 308 | 0.5168 | 0.8462 | 0.8441 |
0.0031 | 155.0 | 310 | 0.5168 | 0.8462 | 0.8441 |
0.0033 | 156.0 | 312 | 0.5167 | 0.8462 | 0.8441 |
0.003 | 157.0 | 314 | 0.5168 | 0.8462 | 0.8441 |
0.0029 | 158.0 | 316 | 0.5175 | 0.8462 | 0.8441 |
0.0031 | 159.0 | 318 | 0.5181 | 0.8462 | 0.8441 |
0.003 | 160.0 | 320 | 0.5186 | 0.8462 | 0.8441 |
0.0031 | 161.0 | 322 | 0.5190 | 0.8462 | 0.8441 |
0.0032 | 162.0 | 324 | 0.5194 | 0.8462 | 0.8441 |
0.0028 | 163.0 | 326 | 0.5201 | 0.8462 | 0.8441 |
0.0026 | 164.0 | 328 | 0.5209 | 0.8462 | 0.8441 |
0.0032 | 165.0 | 330 | 0.5218 | 0.8462 | 0.8441 |
0.0031 | 166.0 | 332 | 0.5226 | 0.8462 | 0.8441 |
0.0029 | 167.0 | 334 | 0.5234 | 0.8462 | 0.8441 |
0.0032 | 168.0 | 336 | 0.5239 | 0.8462 | 0.8441 |
0.0031 | 169.0 | 338 | 0.5240 | 0.8462 | 0.8441 |
0.003 | 170.0 | 340 | 0.5243 | 0.8462 | 0.8441 |
0.0031 | 171.0 | 342 | 0.5246 | 0.8462 | 0.8441 |
0.0024 | 172.0 | 344 | 0.5250 | 0.8462 | 0.8441 |
0.0025 | 173.0 | 346 | 0.5256 | 0.8462 | 0.8441 |
0.0028 | 174.0 | 348 | 0.5265 | 0.8462 | 0.8441 |
0.003 | 175.0 | 350 | 0.5272 | 0.8462 | 0.8441 |
0.003 | 176.0 | 352 | 0.5275 | 0.8462 | 0.8441 |
0.0027 | 177.0 | 354 | 0.5278 | 0.8462 | 0.8441 |
0.0027 | 178.0 | 356 | 0.5277 | 0.8462 | 0.8441 |
0.0028 | 179.0 | 358 | 0.5276 | 0.8462 | 0.8441 |
0.0027 | 180.0 | 360 | 0.5274 | 0.8462 | 0.8441 |
0.0028 | 181.0 | 362 | 0.5272 | 0.8462 | 0.8441 |
0.0035 | 182.0 | 364 | 0.5270 | 0.8462 | 0.8441 |
0.003 | 183.0 | 366 | 0.5269 | 0.8462 | 0.8441 |
0.0028 | 184.0 | 368 | 0.5267 | 0.8462 | 0.8441 |
0.0026 | 185.0 | 370 | 0.5266 | 0.8462 | 0.8441 |
0.0033 | 186.0 | 372 | 0.5265 | 0.8462 | 0.8441 |
0.0028 | 187.0 | 374 | 0.5265 | 0.8462 | 0.8441 |
0.0025 | 188.0 | 376 | 0.5267 | 0.8462 | 0.8441 |
0.0029 | 189.0 | 378 | 0.5268 | 0.8462 | 0.8441 |
0.0029 | 190.0 | 380 | 0.5269 | 0.8462 | 0.8441 |
0.0024 | 191.0 | 382 | 0.5270 | 0.8462 | 0.8441 |
0.0031 | 192.0 | 384 | 0.5271 | 0.8462 | 0.8441 |
0.0028 | 193.0 | 386 | 0.5273 | 0.8462 | 0.8441 |
0.0026 | 194.0 | 388 | 0.5274 | 0.8462 | 0.8441 |
0.0027 | 195.0 | 390 | 0.5275 | 0.8462 | 0.8441 |
0.0026 | 196.0 | 392 | 0.5276 | 0.8462 | 0.8441 |
0.0026 | 197.0 | 394 | 0.5277 | 0.8462 | 0.8441 |
0.0028 | 198.0 | 396 | 0.5277 | 0.8462 | 0.8441 |
0.0026 | 199.0 | 398 | 0.5278 | 0.8462 | 0.8441 |
0.003 | 200.0 | 400 | 0.5278 | 0.8462 | 0.8441 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.