Taxonomy Augmented CARDS
Taxonomy
Metrics
Category | CARDS | Augmented CARDS | Support |
---|---|---|---|
0_0 | 70.9 | 81.5 | 1049 |
1_1 | 60.5 | 70.4 | 28 |
1_2 | 40 | 44.4 | 20 |
1_3 | 37 | 48.6 | 61 |
1_4 | 62.1 | 65.6 | 27 |
1_6 | 56.7 | 59.7 | 41 |
1_7 | 46.4 | 52 | 89 |
2_1 | 68.1 | 69.4 | 154 |
2_3 | 36.7 | 25 | 22 |
3_1 | 38.5 | 34.8 | 8 |
3_2 | 61 | 74.6 | 31 |
3_3 | 54.2 | 65.4 | 23 |
4_1 | 38.5 | 49.4 | 103 |
4_2 | 37.6 | 28.6 | 61 |
4_4 | 30.8 | 54.5 | 46 |
4_5 | 19.7 | 39.4 | 50 |
5_1 | 32.8 | 38.2 | 96 |
5_2 | 38.6 | 53.5 | 498 |
5.3 | - | 62.9 | 200 |
Macro Average | 43.69 | 53.57 | 2407 |
Code
To run the model, you need to first evaluate the binary classification model, as shown below:
# Models
MAX_LEN = 256
BINARY_MODEL_DIR = "crarojasca/BinaryAugmentedCARDS"
TAXONOMY_MODEL_DIR = "crarojasca/TaxonomyAugmentedCARDS"
# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained(
BINARY_MODEL_DIR,
max_length = MAX_LEN, padding = "max_length",
return_token_type_ids = True
)
# Loading Models
## 1. Binary Model
print("Loading binary model: {}".format(BINARY_MODEL_DIR))
config = AutoConfig.from_pretrained(BINARY_MODEL_DIR)
binary_model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL_DIR, config=config)
binary_model.to(device)
## 2. Taxonomy Model
print("Loading taxonomy model: {}".format(TAXONOMY_MODEL_DIR))
config = AutoConfig.from_pretrained(TAXONOMY_MODEL_DIR)
taxonomy_model = AutoModelForSequenceClassification.from_pretrained(TAXONOMY_MODEL_DIR, config=config)
taxonomy_model.to(device)
# Load Dataset
id2label = {
0: '1_1', 1: '1_2', 2: '1_3', 3: '1_4', 4: '1_6', 5: '1_7', 6: '2_1',
7: '2_3', 8: '3_1', 9: '3_2', 10: '3_3', 11: '4_1', 12: '4_2', 13: '4_4',
14: '4_5', 15: '5_1', 16: '5_2', 17: '5_3'
}
text = "Climate change is just a natural phenomenon"
tokenized_text = tokenizer(text, return_tensors = "pt")
# Running Binary Model
outputs = binary_model(**tokenized_text)
binary_score = outputs.logits.softmax(dim = 1)
binary_prediction = torch.argmax(outputs.logits, axis=1)
binary_predictions = binary_prediction.to('cpu').item()
# Running Taxonomy Model
outputs = taxonomy_model(**tokenized_text)
taxonomy_score = outputs.logits.softmax(dim = 1)
taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
taxonomy_prediction = taxonomy_prediction.to('cpu').item()
prediction = "0_0" if binary_prediction==0 else id2label[taxonomy_prediction]
prediction
- Downloads last month
- 410
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.