|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from timm.models.registry import register_model |
|
|
|
|
|
from myFFCResblock0 import myFFCResblock |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXt0(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - |
|
https://arxiv.org/pdf/2201.03545.pdf |
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, block, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., |
|
): |
|
super().__init__() |
|
|
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[block(dim=dims[i], drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.apply(self._init_weights) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x): |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
return self.norm(x.mean([-2, -1])) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dwt_init(x): |
|
x01 = x[:, :, 0::2, :] / 2 |
|
x02 = x[:, :, 1::2, :] / 2 |
|
x1 = x01[:, :, :, 0::2] |
|
x2 = x02[:, :, :, 0::2] |
|
x3 = x01[:, :, :, 1::2] |
|
x4 = x02[:, :, :, 1::2] |
|
x_LL = x1 + x2 + x3 + x4 |
|
x_HL = -x1 - x2 + x3 + x4 |
|
x_LH = -x1 + x2 - x3 + x4 |
|
x_HH = x1 - x2 - x3 + x4 |
|
return x_LL, torch.cat((x_HL, x_LH, x_HH), 1) |
|
|
|
class DWT(nn.Module): |
|
def __init__(self): |
|
super(DWT, self).__init__() |
|
self.requires_grad = False |
|
def forward(self, x): |
|
return dwt_init(x) |
|
|
|
class DWT_transform(nn.Module): |
|
def __init__(self, in_channels,out_channels): |
|
super().__init__() |
|
self.dwt = DWT() |
|
self.conv1x1_low = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) |
|
self.conv1x1_high = nn.Conv2d(in_channels*3, out_channels, kernel_size=1, padding=0) |
|
def forward(self, x): |
|
dwt_low_frequency,dwt_high_frequency = self.dwt(x) |
|
dwt_low_frequency = self.conv1x1_low(dwt_low_frequency) |
|
dwt_high_frequency = self.conv1x1_high(dwt_high_frequency) |
|
return dwt_low_frequency,dwt_high_frequency |
|
|
|
def blockUNet(in_c, out_c, name, transposed=False, bn=False, relu=True, dropout=False): |
|
block = nn.Sequential() |
|
if relu: |
|
block.add_module('%s_relu' % name, nn.ReLU(inplace=True)) |
|
else: |
|
block.add_module('%s_leakyrelu' % name, nn.LeakyReLU(0.2, inplace=True)) |
|
if not transposed: |
|
block.add_module('%s_conv' % name, nn.Conv2d(in_c, out_c, 4, 2, 1, bias=False)) |
|
else: |
|
block.add_module('%s_conv' % name, nn.Conv2d(in_c, out_c, kernel_size=3, stride=1, padding=1)) |
|
block.add_module('%s_bili' % name, nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)) |
|
if bn: |
|
block.add_module('%s_bn' % name, nn.BatchNorm2d(out_c)) |
|
if dropout: |
|
block.add_module('%s_dropout' % name, nn.Dropout2d(0.5, inplace=True)) |
|
return block |
|
|
|
|
|
|
|
|
|
class dwt_ffc_UNet2(nn.Module): |
|
def __init__(self,output_nc=3, nf=16): |
|
super(dwt_ffc_UNet2, self).__init__() |
|
layer_idx = 1 |
|
name = 'layer%d' % layer_idx |
|
layer1 = nn.Sequential() |
|
layer1.add_module(name, nn.Conv2d(16, nf-1, 4, 2, 1, bias=False)) |
|
layer_idx += 1 |
|
name = 'layer%d' % layer_idx |
|
layer2 = blockUNet(nf, nf*2-2, name, transposed=False, bn=True, relu=False, dropout=False) |
|
layer_idx += 1 |
|
name = 'layer%d' % layer_idx |
|
layer3 = blockUNet(nf*2, nf*4-4, name, transposed=False, bn=True, relu=False, dropout=False) |
|
layer_idx += 1 |
|
name = 'layer%d' % layer_idx |
|
layer4 = blockUNet(nf*4, nf*8-8, name, transposed=False, bn=True, relu=False, dropout=False) |
|
layer_idx += 1 |
|
name = 'layer%d' % layer_idx |
|
layer5 = blockUNet(nf*8, nf*8-16, name, transposed=False, bn=True, relu=False, dropout=False) |
|
layer_idx += 1 |
|
name = 'layer%d' % layer_idx |
|
layer6 = blockUNet(nf*4, nf*4, name, transposed=False, bn=False, relu=False, dropout=False) |
|
|
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer6 = blockUNet(nf * 4, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False) |
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer5 = blockUNet(nf * 16+16, nf * 8, name, transposed=True, bn=True, relu=True, dropout=False) |
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer4 = blockUNet(nf * 16+8, nf * 4, name, transposed=True, bn=True, relu=True, dropout=False) |
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer3 = blockUNet(nf * 8+4, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False) |
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer2 = blockUNet(nf * 4+2, nf, name, transposed=True, bn=True, relu=True, dropout=False) |
|
layer_idx -= 1 |
|
name = 'dlayer%d' % layer_idx |
|
dlayer1 = blockUNet(nf * 2+1, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False) |
|
|
|
self.initial_conv=nn.Conv2d(9,16,3,padding=1) |
|
self.bn1=nn.BatchNorm2d(16) |
|
self.layer1 = layer1 |
|
self.DWT_down_0= DWT_transform(9,1) |
|
self.layer2 = layer2 |
|
self.DWT_down_1 = DWT_transform(16, 2) |
|
self.layer3 = layer3 |
|
self.DWT_down_2 = DWT_transform(32, 4) |
|
self.layer4 = layer4 |
|
self.DWT_down_3 = DWT_transform(64, 8) |
|
self.layer5 = layer5 |
|
self.DWT_down_4 = DWT_transform(128, 16) |
|
self.layer6 = layer6 |
|
self.dlayer6 = dlayer6 |
|
self.dlayer5 = dlayer5 |
|
self.dlayer4 = dlayer4 |
|
self.dlayer3 = dlayer3 |
|
self.dlayer2 = dlayer2 |
|
self.dlayer1 = dlayer1 |
|
self.tail_conv1 = nn.Conv2d(48, 32, 3, padding=1, bias=True) |
|
self.bn2=nn.BatchNorm2d(32) |
|
self.tail_conv2 = nn.Conv2d(nf*2, output_nc, 3,padding=1, bias=True) |
|
|
|
|
|
self.FFCResNet = myFFCResblock(input_nc=64, output_nc=64) |
|
|
|
def forward(self, x): |
|
conv_start=self.initial_conv(x) |
|
conv_start=self.bn1(conv_start) |
|
conv_out1 = self.layer1(conv_start) |
|
dwt_low_0,dwt_high_0=self.DWT_down_0(x) |
|
out1=torch.cat([conv_out1, dwt_low_0], 1) |
|
conv_out2 = self.layer2(out1) |
|
dwt_low_1,dwt_high_1= self.DWT_down_1(out1) |
|
out2 = torch.cat([conv_out2, dwt_low_1], 1) |
|
conv_out3 = self.layer3(out2) |
|
|
|
dwt_low_2,dwt_high_2 = self.DWT_down_2(out2) |
|
out3 = torch.cat([conv_out3, dwt_low_2], 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
out3_ffc= self.FFCResNet(out3) |
|
|
|
|
|
dout3 = self.dlayer6(out3_ffc) |
|
|
|
|
|
Tout3_out2 = torch.cat([dout3, out2,dwt_high_1], 1) |
|
Tout2 = self.dlayer2(Tout3_out2) |
|
Tout2_out1 = torch.cat([Tout2, out1,dwt_high_0], 1) |
|
Tout1 = self.dlayer1(Tout2_out1) |
|
|
|
Tout1_outinit = torch.cat([Tout1, conv_start], 1) |
|
tail1=self.tail_conv1(Tout1_outinit) |
|
tail2=self.bn2(tail1) |
|
dout1 = self.tail_conv2(tail2) |
|
|
|
|
|
return dout1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class ConvNeXt(nn.Module): |
|
def __init__(self, block, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 27, 3], dims=[256, 512, 1024,2048], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., |
|
): |
|
super().__init__() |
|
|
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[block(dim=dims[i], drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
|
|
def forward(self, x): |
|
x_layer1 = self.downsample_layers[0](x) |
|
x_layer1 = self.stages[0](x_layer1) |
|
|
|
|
|
|
|
x_layer2 = self.downsample_layers[1](x_layer1) |
|
x_layer2 = self.stages[1](x_layer2) |
|
|
|
|
|
x_layer3 = self.downsample_layers[2](x_layer2) |
|
out = self.stages[2](x_layer3) |
|
|
|
|
|
return x_layer1, x_layer2, out |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class PALayer(nn.Module): |
|
def __init__(self, channel): |
|
super(PALayer, self).__init__() |
|
self.pa = nn.Sequential( |
|
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True), |
|
nn.Sigmoid() |
|
) |
|
def forward(self, x): |
|
y = self.pa(x) |
|
return x * y |
|
|
|
class CALayer(nn.Module): |
|
def __init__(self, channel): |
|
super(CALayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.ca = nn.Sequential( |
|
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True), |
|
nn.Sigmoid() |
|
) |
|
def forward(self, x): |
|
y = self.avg_pool(x) |
|
y = self.ca(y) |
|
return x * y |
|
|
|
class CP_Attention_block(nn.Module): |
|
def __init__(self, conv, dim, kernel_size): |
|
super(CP_Attention_block, self).__init__() |
|
self.conv1 = conv(dim, dim, kernel_size, bias=True) |
|
self.act1 = nn.ReLU(inplace=True) |
|
self.conv2 = conv(dim, dim, kernel_size, bias=True) |
|
self.calayer = CALayer(dim) |
|
self.palayer = PALayer(dim) |
|
def forward(self, x): |
|
res = self.act1(self.conv1(x)) |
|
res = res + x |
|
res = self.conv2(res) |
|
res = self.calayer(res) |
|
res = self.palayer(res) |
|
res += x |
|
return res |
|
|
|
def default_conv(in_channels, out_channels, kernel_size, bias=True): |
|
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias) |
|
|
|
class knowledge_adaptation_convnext(nn.Module): |
|
def __init__(self): |
|
super(knowledge_adaptation_convnext, self).__init__() |
|
self.encoder = ConvNeXt(Block, in_chans=9,num_classes=1000, depths=[3, 3, 27, 3], dims=[256, 512, 1024,2048], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1.) |
|
'''pretrained_model = ConvNeXt0(Block, in_chans=3,num_classes=1000, depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1.) |
|
#pretrained_model=nn.DataParallel(pretrained_model) |
|
checkpoint=torch.load('./weights/convnext_xlarge_22k_1k_384_ema.pth') |
|
#for k,v in checkpoint["model"].items(): |
|
#print(k) |
|
#url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth" |
|
|
|
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cuda:0") |
|
pretrained_model.load_state_dict(checkpoint["model"]) |
|
|
|
pretrained_dict = pretrained_model.state_dict() |
|
model_dict = self.encoder.state_dict() |
|
key_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} |
|
model_dict.update(key_dict) |
|
self.encoder.load_state_dict(model_dict)''' |
|
|
|
|
|
self.up_block= nn.PixelShuffle(2) |
|
self.attention0 = CP_Attention_block(default_conv, 1024, 3) |
|
self.attention1 = CP_Attention_block(default_conv, 256, 3) |
|
self.attention2 = CP_Attention_block(default_conv, 192, 3) |
|
self.attention3 = CP_Attention_block(default_conv, 112, 3) |
|
self.attention4 = CP_Attention_block(default_conv, 28, 3) |
|
self.conv_process_1 = nn.Conv2d(28, 28, kernel_size=3,padding=1) |
|
self.conv_process_2 = nn.Conv2d(28, 28, kernel_size=3,padding=1) |
|
self.tail = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(28, 3, kernel_size=7, padding=0), nn.Tanh()) |
|
def forward(self, input): |
|
x_layer1, x_layer2, x_output = self.encoder(input) |
|
|
|
x_mid = self.attention0(x_output) |
|
|
|
x = self.up_block(x_mid) |
|
x = self.attention1(x) |
|
|
|
x = torch.cat((x, x_layer2), 1) |
|
|
|
x = self.up_block(x) |
|
x = self.attention2(x) |
|
x = torch.cat((x, x_layer1), 1) |
|
x = self.up_block(x) |
|
x = self.attention3(x) |
|
|
|
x = self.up_block(x) |
|
x = self.attention4(x) |
|
|
|
x=self.conv_process_1(x) |
|
out=self.conv_process_2(x) |
|
return out |
|
|
|
|
|
class fusion_net(nn.Module): |
|
def __init__(self): |
|
super(fusion_net, self).__init__() |
|
self.dwt_branch=dwt_ffc_UNet2() |
|
self.knowledge_adaptation_branch=knowledge_adaptation_convnext() |
|
self.fusion = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(31, 3, kernel_size=7, padding=0), nn.Tanh()) |
|
def forward(self, input): |
|
dwt_branch=self.dwt_branch(input) |
|
knowledge_adaptation_branch=self.knowledge_adaptation_branch(input) |
|
x = torch.cat([dwt_branch, knowledge_adaptation_branch], 1) |
|
x = self.fusion(x) |
|
return x |
|
|
|
|
|
|
|
class Discriminator(nn.Module): |
|
def __init__(self): |
|
super(Discriminator, self).__init__() |
|
self.net = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=3, padding=1), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(64, 128, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(128, 256, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(256, 512, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(512, 1024, kernel_size=1), |
|
nn.LeakyReLU(0.2), |
|
nn.Conv2d(1024, 1, kernel_size=1) |
|
) |
|
|
|
def forward(self, x): |
|
batch_size = x.size(0) |
|
return torch.sigmoid(self.net(x).view(batch_size)) |
|
|
|
|
|
class Discriminator2(nn.Module): |
|
def __init__(self): |
|
super(Discriminator2, self).__init__() |
|
self.net = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=3, padding=1), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(64, 128, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(128, 256, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(256, 512, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2), |
|
|
|
nn.Conv2d(512, 1, kernel_size=3, padding=1), |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
if __name__ == '__main__': |
|
|
|
device = torch.device("cuda:0") |
|
|
|
|
|
im = torch.rand(1, 3, 640, 640).to(device) |
|
model_g = fusion_net().to(device) |
|
|
|
out_data = model_g(im) |
|
|